首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We discuss how different cosmological models of the Universe affect the probability that a background source has multiple images related by an angular distance, i.e., the optical depth of gravitational lensing. We examine some cosmological models for different values of the density parameter Ω i : (i) the cold dark matter model, (ii) the ΛCDM model, (iii) the Bose-Einstein condensate dark matter model, (iv) the Chaplygin gas model, (v) the viscous fluid cosmological model and (vi) the holographic dark energy model by using the singular isothermal sphere (SIS) model for the halos of dark matter. We note that the dependence of the energy-matter content of the universe profoundly modifies the frequency of multiple quasar images.  相似文献   

2.
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.  相似文献   

3.
We argue that the so-called “Pioneer Anomaly” is related to the quantum vacuum fluctuations. Our approach is based on the hypothesis of the gravitational repulsion between matter and antimatter, what allows considering, the virtual particle–antiparticle pairs in the physical vacuum, as gravitational dipoles. Our simplified calculations indicate that the anomalous deceleration of the Pioneer spacecrafts could be a consequence of the vacuum polarization in the gravitational field of the Sun. At the large distances, the vacuum polarization by baryonic matter could mimic dark matter what opens possibility that dark matter do not exist, as advocated by the Modified Newtonian Dynamics (MOND).  相似文献   

4.
Using N -body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter   w =−0.6  . The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one.
The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by  σH= (88 ± 20  km s−1) × ( R /7 Mpc)  . The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with  −0.1 < δρ/ρ < 0.6  on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe.  相似文献   

5.
6.
Using a suite of N -body simulations in different cold dark matter (CDM) scenarios, with cosmological constant (ΛCDM) and without (OCDM, SCDM), we study the Hubble flow (σH) in Local Volumes (LV) around Local Group (LG) like objects found in these simulations, and compare the numerical results with the most recent observations. We show that ΛCDM and OCDM models exhibit the same behaviour of σH. Hence, we demonstrate that the observed coldness of the Hubble flow is not likely to be a manifestation of the dark energy, contrary to previous claims. The coldness does not constitute a problem by itself but it poses a problem to the standard ΛCDM model only if the mean density within the LV is greater than twice the mean matter cosmic density. The lack of blueshifted galaxies in the LV, outside of the LG can be considered as another manifestation of the coldness of the flow. Finally, we show that the main dynamical parameter that affects the coldness of the flow is the relative isolation of the LG, and the absence of nearby Milky Way like objects within a distance of about  3 Mpc  .  相似文献   

7.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

8.
We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter.  相似文献   

9.
The concept of a Universe undergoing an acceleration in its expansion rate and predicating the existence of dark energy is based on observed deficits in brightness of Type 1a supernovae at high redshifts, amounting to Δ m~0.3–0.5. We show that the effect of intergalactic graphite whiskers of radii in the general range 0.03–0.07 μm and lengths in excess of ~5 μm will be to mimic the effects of dark energy in the redshift magnitude relation for Type 1a supernovae. The mean intergalactic density of whiskers required for such an effect is ~3×10?34 g cm?3, about 10?5 of the critical closure density.  相似文献   

10.
We present a theoretical study of an early dark energy (EDE) model. The equation of state ω(z) evolves during the thermal history in a framework of a Friedmann-Lemaitre-Robertson-Walker Universe, following an effective parametrization that is a function of redshift z. We explore the evolution of the system from the radiation domination era to the late times, allowing the EDE model to have a non-negligible contribution at high redshift (as opposed to the cosmological constant that only plays a role once the structure is formed) with a very little input to the Big Bang Nucleosynthesis, and to do so, the equation of state mimics the radiation behaviour, but being subdominant in terms of its energy density. At late times, the equation of state of the dark energy model asymptotically tends to the fiducial value of the De Sitter domination epoch, providing an explanation for the accelerated expansion of the Universe at late times, emulating the effect of the cosmological constant. The proposed model has three free parameters, that we constrain using SNIa luminosity distances, along with the CMB shift parameter and the deceleration parameter calculated at the time of dark energy - matter equality. With full knowledge of the best fit for our model, we calculate different observables and compare these predictions with the standardΛCDM model. Besides the general consent of the community with the cosmological constant, there is no fundamental reason to choose that particular candidate as dark energy. Here, we open the opportunity to consider a more dynamical model, that also accounts for the late accelerated expansion of the Universe.  相似文献   

11.
We analyze the behavior of the scalar field as dark energy of the Universe in a static world of galaxies and clusters of galaxies. We find the analytical solutions of evolution equations of the density and velocity perturbations of dark matter and dark energy, which interact only gravitationally, along with the perturbations of metric in a static world with background Minkowski metric. It was shown that quintessential and phantom dark energy in the static world of galaxies and clusters of galaxies is gravitationally stable and can only oscillate by the influence of self-gravity. In the gravitational field of dark matter perturbations, it is able to condense monotonically, but the amplitude of density and velocity perturbations on all scales remains small. It was also illustrated that the “accretion” of phantom dark energy in the region of dark matter overdensities causes formation of dark energy underdensities-the regions with negative amplitude of density perturbations of dark energy.  相似文献   

12.
We analyse the redshift space topology and geometry of the nearby Universe by computing the Minkowski functionals of the Updated Zwicky Catalogue (UZC). The UZC contains the redshifts of almost 20 000 galaxies, is 96 per cent complete to the limiting magnitude m Zw=15.5, and includes the Center for Astrophysics (CfA) Redshift Survey (CfA2). From the UZC we can extract volume-limited samples reaching a depth of 70  h −1 Mpc before sparse sampling dominates. We quantify the shape of the large-scale galaxy distribution by deriving measures of planarity and filamentarity from the Minkowski functionals. The nearby Universe shows a large degree of planarity and a small degree of filamentarity. This quantifies the sheet-like structure of the Great Wall, which dominates the northern region (CfA2N) of the UZC. We compare these results with redshift space mock catalogues constructed from high-resolution N -body simulations of two cold dark matter (CDM) models with either a decaying massive neutrino ( τ CDM) or a non-zero cosmological constant (ΛCDM). We use semi-analytic modelling to form and evolve galaxies in these dark matter‐only simulations. We are thus able, for the first time, to compile redshift space mock catalogues which contain galaxies, along with their observable properties, rather than dark matter particles alone. In both models the large-scale galaxy distribution is less coherent than the observed distribution, especially with regard to the large degree of planarity of the real survey. However, given the small volume of the region studied, this disagreement can still be a result of cosmic variance, as shown by the agreement between the ΛCDM model and the southern region of CfA2.  相似文献   

13.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

14.
We compare the structure and substructure of dark matter halos in model universes dominated by collisional, strongly self-interacting dark matter (SIDM) and collisionless, weakly interacting dark matter (CDM). While SIDM virialized halos are more nearly spherical than CDM halos, they can be rotationally flattened by as much as 20% in their inner regions. Substructure halos suffer ram-pressure truncation and drag, which are more rapid and severe than their gravitational counterparts tidal stripping and dynamical friction. Lensing constraints on the size of galactic halos in clusters are a factor of 2 smaller than predicted by gravitational stripping, and the recent detection of tidal streams of stars escaping from the satellite galaxy Carina suggests that its tidal radius is close to its optical radius of a few hundred parsecs-an order of magnitude smaller than predicted by CDM models but consistent with SIDM models. The orbits of SIDM satellites suffer significant velocity bias, sigmaSIDM&solm0;sigmaCDM=0.85, and are more circular than CDM satellites, betaSIDM approximately 0.5, in agreement with the inferred orbits of the Galaxy's satellites. In the limit of a short mean free path, SIDM halos have singular isothermal density profiles; thus, in its simplest incarnation SIDM, is inconsistent with galactic rotation curves.  相似文献   

15.
We investigate the topology of the new Point Source Catalogue Redshift Survey (PSCz) of IRAS galaxies by means of the genus statistic. The survey maps the local Universe with approximately 15 000 galaxies over 84.1 per cent of the sky, and provides an unprecedented number of resolution elements for the topological analysis. For comparison with the PSCz data we also examine the genus of large N -body simulations of four variants of the cold dark matter (CDM) cosmogony. The simulations are part of the Virgo project to simulate the formation of structure in the Universe. We assume that the statistical properties of the galaxy distribution can be identified with those of the dark matter particles in the simulations. We extend the standard genus analysis by examining the influence of sampling noise on the genus curve and introducing a statistic able to quantify the amount of phase correlation present in the density field, the amplitude drop of the genus compared to a Gaussian field with identical power spectrum. The results for PSCz are consistent with the hypothesis of random-phase initial conditions. In particular, no strong phase correlation is detected on scales ranging from 10 to 32 h −1 Mpc, whereas there is a positive detection of phase correlation at smaller scales. Among the simulations, phase correlations are detected in all models at small scales, albeit with different strengths. When scaled to a common normalization, the amplitude drop depends primarily on the shape of the power spectrum. We find that the constant-bias standard CDM model can be ruled out at high significance, because the shape of its power spectrum is not consistent with PSCz. The other CDM models with more large-scale power all fit the PSCz data almost equally well, with a slight preference for a high-density τCDM model.  相似文献   

16.
We present the 21-cm rotation curve of the nearby galaxy M33 out to a galactocentric distance of 16 kpc (13 disc scalelengths). The rotation curve keeps rising out to the last measured point and implies a dark halo mass ≳5×1010 M. The stellar and gaseous discs provide virtually equal contributions to the galaxy gravitational potential at large galactocentric radii, but no obvious correlation is found between the radial distribution of dark matter and the distribution of stars or gas.
Results of the best fit to the mass distribution in M33 picture a dark halo which controls the gravitational potential from 3 kpc outward, with a matter density which decreases radially as R −1.3. The density profile is consistent with the theoretical predictions for structure formation in hierarchical clustering cold dark matter (CDM) models, and favours lower mass concentrations than those expected in the standard cosmogony.  相似文献   

17.
夏子晴 《天文学报》2021,62(2):21-112
目前已经有很多观测证据表明宇宙中存在着大量暗物质,其能量密度占据了目前宇宙总能量密度的1/4.根据高精度的数值模拟和引力透镜观测,我们已经对从矮星系到星系团中的暗物质空间分布有了较好的理解,但是对于暗物质究竟是什么我们还一无所知.由此,物理学家提出了很多假想的粒子模型.  相似文献   

18.
The parameters of the cosmological model with cold dark matter and cosmological constant (ΛCDM model) were determined using three-year Wilkinson Microwave Anisotropy Probe observations of cosmic microwave background together with some data on the large-scale structure of the universe. The data cover scales from 1 to 10 000 Mpc. The best-fit ΛCDM model parameters were derived by minimizing the x 2 statistic with the use of the Levenberg-Markquardt approach (ΩΛ = 0.736 ± 0.065, Ωm = 0.238 ± 0.080, Ωb = 0.05 ± 0.011, h = 0.68 ± 0.09, σ8 = 0.73 ± 0.08, and n s = 0.96 ± 0.015). The ΛCDM model with these parameters is shown to agree well with the angular power spectrum of cosmic microwave background temperature fluctuations and with the density perturbation power spectra estimated from spatial distributions of galaxies and rich clusters of galaxies as well as from the statistics of the Ly α absorption lines in the spectra of distant quasars. The accord between the model large-scale structure characteristics and the observed ones is analyzed, and conceivable factors causing appreciable discrepancies between some characteristics are discussed.  相似文献   

19.
The dark energy model with barotropic equation of state, which interacts with dark matter by gravitation and by other force, which causes the energy-momentum exchange between them, is considered. Both components are described in approximation of ideal fluid, which are parameterized by density, equation of state and effective sound speed parameters. The three types of interactions between dark components are considered: interaction independent from their densities, interaction proportional to energy density of dark energy, and interaction proportional to energy density of dark matter. The equations that describe the expansion dynamics of homogeneous and isotropic Universe and evolution of densities of both components for different values of interaction parameter are obtained on the bases of the general covariant conservation equations and Einstein’s ones. For three kinds of interactions, the existing of the range of values of parameters of dark energy for which the densities of dark components are negative was shown. The conditions of positivity of energy density of dark energy and dark matter were written for which the constraints on the value of parameter of interaction were derived. The dynamics of expansion of the Universe with these interactions of dark energy and dark matter is analyzed.  相似文献   

20.
The subject of this paper is the derivation of the integrated Sachs–Wolfe (iSW) effect in cosmologies with coupled dark matter and dark energy fluids. These couplings influence the iSW effect in three ways: the Hubble function assumes a different scaling, the structure growth rate shows a different time evolution and, in addition, the Poisson equation, which relates the density perturbations to fluctuations in the gravitational potential, is changed, due to the violation of the scaling  ρ∝ a −3  of the matter density ρ with scalefactor a . Exemplarily, I derive the iSW spectra for a model in which dark matter decays into dark energy, investigate the influence of the dark matter decay rate and the dark energy equation of state on the iSW signal, and discuss the analogies for gravitational lensing. Quite generally, iSW measurements should reach similar accuracy in determining the dark energy equation of state parameter and the coupling constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号