首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
青海抗得弄舍重晶石型金多金属矿床成矿地质特征   总被引:1,自引:0,他引:1  
抗得弄舍重晶石型金多金属矿床为近几年在东昆仑成矿带东段新发现的典型的热水喷流沉积型金多金属矿床,目前该矿床金矿和铅锌矿的规模均已达大型以上,矿床的发现对东昆仑成矿带东段的找矿带来了新的生机和活力。该矿床以典型的热水沉积岩重晶石含金矿为特点,矿床受地层岩性和同生断裂构造双重控制,矿化与蚀变具有明显的空间分带特征。研究表明硫化物中的铅主要来自地幔,硫来自海水或者海相硫酸盐。指出成矿作用经历了早期喷流沉积成矿期,主要在中低温条件下形成铅锌硫化物矿;晚期热水沉积成矿期,主要在低温条件下形成重晶石和金矿;后期热液及构造活动对矿床有了进一步的富集和改造。  相似文献   

2.
秦岭造山带黑色岩系与金属矿床类型及成矿系列   总被引:7,自引:2,他引:5       下载免费PDF全文
秦岭造山带黑色岩系划分为南、北、中三个带,北带分布于北秦岭,以秦岭杂岩为基底的岛弧火山岩与花岗岩带到二郎坪弧后边缘海盆带,形成于活动大陆边缘类似的沟、弧、盆构造体系,产出沉积-变质-构造-热液改造型镍-钼小型矿床.中带分布于南秦岭北部,环绕岛链古隆起形成深水-半深水滞留断陷局限盆地,发育与热水沉积有关的黑色岩系,赋存沉积轻微改造型超大型钒矿床和沉积-构造-热液改造型大型金-钒矿床.南带分布于南秦岭南部,扬子板块北缘早古生代沉积区局部拉张环境发育裂谷式断陷盆地,发育巨厚的硅质-泥质-重晶石互层岩系,形成沉积改造中型含钼-钒矿床和热水沉积大型毒重石-重晶石矿床等.解剖了秦岭黑色岩系容矿的典型矿床特征与成矿作用,划分了矿床成因类型,建立了黑色岩系容矿的金属矿床成矿系列.  相似文献   

3.
《福建地质》2021,40(2)
缅甸东枝市波赛矿区铅锌矿床位于保山—掸邦地块,处于掸泰铅锌银金锑铁成矿带中部。矿区铅锌矿床受中奥陶统碳酸盐岩控制,可分为碳酸盐岩层控型和碳酸盐岩构造控制型2种。层控型矿体产于含重晶石夹层中,脉状矿体产于北西向断裂破碎带中,受北西向构造及中奥陶纪地层的双重控制。矿石类型有原生矿和次生矿2种。区域无岩浆热液活动,矿床成矿物质来源于奥陶纪前期的盆地沉积地层,矿区及区域成矿条件有利,找矿潜力巨大。  相似文献   

4.
宁蒗地区巴打湾重晶石矿床是在上奥陶统沉积型重晶石矿的基础上,由喜山期中酸性岩浆热液活动改造而成的沉积-热液叠加型矿床。通过区内矿床特征及地球化学的研究,建立了该区沉积-改造型重晶石矿床成矿模式。  相似文献   

5.
以矿床成矿系列理论为基础, 提出黔东及毗邻区新元古代锰矿、重晶石矿大规模成矿作用主要是流体成矿作用, 又有沉积成矿作用。在南华裂谷盆地的不同演化阶段, 形成新元古代至早古生代黑色岩系有关的锰、重晶石、磷、镍、钼、钒、铀、页岩气等矿床成矿亚系列。提出区域性的导矿构造是新发现北西向中元古代基底中的铜仁古裂谷。对铜仁古裂谷与近东西向南华裂谷盆地同生断裂、次级地堑盆地等配矿构造的交汇处, 形成含矿流体底辟通道, 控制形成了系列超大型锰矿床、超大型重晶石矿床等区域成矿规律进行了论述。在总结贵州新元古代锰矿、重晶石矿区域成矿规律的基础上, 建立了区域成矿模式, 对成功指导实现锰矿和重晶石找矿突破进行了介绍。  相似文献   

6.
本文从矿物岩石学、地球化学和沉积盆地分析角度,研究贵州天柱大河边-湖南贡溪两个超大型重晶石矿床中重晶石(矿)岩及其共生岩石的地球化学特征及构造地质背景。天柱-新晃-玉屏寒武纪热水沉积成矿盆地是发育在大陆斜坡上的断陷型热水沉积成矿盆地,由于同生断层作用将盆地切割成一系列次级盆地,大河边-碧林及龙背-铜盆盖三级热水沉积成矿盆地是大型重晶石矿床的构造定位空间。重晶石矿层主要赋存于下寒武统牛蹄塘组第一岩性段的黑色岩系中。 重晶石矿层是由海底低温热水同生沉积作用形成(105-192℃),古热水场的地球化学类型为硫酸盐型热水。硫酸盐型热水发生大规模同生沉积成岩成矿作用形成超大型重晶石矿床,重晶石矿层之上的黑色碳质粘土岩可能形成于封闭、还原、滞流的深水沉积环境,黑色碳质粘土岩构成矿层的封闭保存条件。  相似文献   

7.
我国重晶石矿床成因及成矿远景综述   总被引:5,自引:0,他引:5  
我国重晶石矿床的形成受大陆裂谷系、弧-盆系和陆内挤隆系三种大地构造环境控制,多数矿床形成于大构造旋回的早期阶段,并与一定的岩相古地理环境及岩浆活动有关。矿床可划分为外生成因[沉积型、风化(残积坡积)型]和内生成因(火山-沉积型、层控型、热液型)等不同类型。成矿之钡源主要来自深部的火山-气液。矿床多在中、低温,弱酸性向弱碱性过渡的氧化环境的硫酸盐型成矿溶液中形成。中国重晶石矿具有较好的找矿前景,在一些工业需求地区,有发现新矿床的可能。  相似文献   

8.
以岩石、同位素地球化学等测试结果为基础,对广西象州县境内某铜铅锌重晶石矿的矿床地质特征、成因及其成矿时代进行了研究。结果表明:矿区的矿化受构造破碎带控制;重晶石硫来源于泥盆系中封存的、与沉积物同时沉积的海水或膏盐;铜铅锌钡矿源层以泥盆系为主,部分来自深源的岩浆;含矿溶液为雨水经地下深循环形成的含矿热卤水;成矿温度约为170℃,属中—低温热液型矿床;矿床形成时代为印支—燕山早期。研究结果为该铜铅锌重晶石矿的下一步地质勘查工作奠定了基础。  相似文献   

9.
水城-紫云-南丹深断裂是跨越黔桂两省较为闻名的断裂带,沿断裂带两侧分布一系列矿床类型,贵州镇宁泥盆系大型重晶石矿床位于北西侧。对镇宁大型重晶石矿床的沉积学、地球化学及成矿背景的研究发现,矿石中发育纹层状构造、条带状构造、角砾状构造、碎屑状构造和厚层块状构造等热水沉积构造,常量元素特征揭示该矿床可能形成于以SiO2及含矿硫酸盐流体的同生混合沉积作用。重晶石矿(岩)石中Sr、Zn和W明显富集,显示热水沉积特征,且该重晶石矿(岩)石在lg U-lg Th和Cr-Zr相关图解上也均显示热水沉积特征。稀土配分模式富集轻稀土,δEu表现正异常,δCe表现负异常,具热水喷流成矿特征。因此,认为镇宁大型重晶石矿属海底热水喷流沉积形成的产物。  相似文献   

10.
刚果(金)加丹加省堪苏祁铜-钴矿床地质特征及成因探讨   总被引:2,自引:0,他引:2  
堪苏祁铜钴矿区位于刚果(金)加丹加省南部的沙巴型铜钴矿亚带北西延部分的转折端。该矿床地质工作及研究程度极低,铜钴矿体受罗安群地层、韧脆性剪切及断裂构造控制,特别是钴明显受韧脆性剪切强变形带控制。罗安群上岩性段以富钴为主,同时也富铜,钴、铜兼有,下岩性段则富铜贫钴,矿体呈似层状或透镜状产出。根据矿床地质特征,初步认为该矿床经历了早期沉积成岩成矿阶段-后期多期热液构造叠加富集-晚期次生氧化改造多个阶段,为复合成因的层控改造矿床,矿区内铜矿早期是受沉积型砂页岩地层的控制,然而,钴矿的形成主要是受后期构造的控制。  相似文献   

11.
山东新城金矿是胶东焦家-新城成矿带上重要的蚀变岩型金矿床。矿体主要赋存在焦家断裂带下盘靠近主裂面的黄铁绢英岩和黄铁绢英岩化碎裂岩内,严格受焦家断裂构造控制。矿石矿物主要有黄铁矿、黄铜矿、方铅矿、闪锌矿、自然金、银金矿和辉银矿等。区内围岩蚀变类型主要有黄铁绢英岩化、绢英岩化、绢云母化、硅化、钾化和碳酸盐化等,且矿化主要与黄铁绢英岩化和硅化关系密切。本次研究主要针对新城金矿床深部矿石中的流体包裹体进行了岩相学、显微测温、单个包裹体成分激光拉曼光谱及氢、氧同位素分析研究。研究表明:该矿床深部矿石中纯CO2包裹体数量有明显增加现象,同时发育含CO2包裹体和气液两相包裹体;成矿流体具有低盐度(w(NaCl))(2.06%~10.24%)、低密度(0.54~0.97 g/cm3)的特点;主成矿温度为260~300 ℃,成矿压力为65~113 MPa,成矿深度为6.51~8.82 km。成矿过程中流体经历了CO2-NaCl-H2O体系的不混溶作用。氢、氧同位素分析认为,成矿流体δDSMOW为-75.1‰~-61.4‰,δ18O为4.80‰~6.40‰,并将新城金矿床与典型“焦家式”金矿床成矿流体特征及来源进行对比,认为新城金矿成矿流体主要以幔源流体为主。综合研究表明,新城金矿床成因类型为幔源流体参与成矿的中温热液脉型金矿床。  相似文献   

12.
The partitioning of Fe and Zn between coexisting fahlore and sphalerite and fluid inclusions in sphalerite from the Darasun gold deposit have been studied. These data were used to estimate the formation temperature of the minerals by the sphalerite–fahlore geothermometer. The calculated crystallization temperature of 175–355°С is close to the homogenization temperature of fluid inclusions in sphalerite of 225–385°С.The estimated pressure for fluid inclusion trapping ranged from 340 to 1420 bar. The sulfur fugacity obtained from the FeS content in sphalerite associated with pyrite and the calculated temperature ranges from 10–5.5 to 10–11 bar.  相似文献   

13.
Arsenian pyrite in the Shuiyindong Carlin-type gold deposit in Guizhou, China, is the major host for gold with 300 to 4,000 ppm Au and 0.65 to 14.1 wt.% As. Electron miroprobe data show a negative correlation of As and S in arsenian pyrite, which is consistent with the substitution of As for S in the pyrite structure. The relatively homogeneous distribution of gold in arsenian pyrite and a positive correlation of As and Au, with Au/As ratios below the solubility limit of gold in arsenian pyrite, suggest that invisible gold is likely present as Au1+ in a structurally bound Au complex in arsenian pyrite. Geochemical modeling using the laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of fluid inclusions for the major ore forming stage shows that the dominant Au species were Au(HS)2 (77%) and AuHS(aq)0 (23%). Gold-hydroxyl and Gold-chloride complexes were negligible. The ore fluid was undersaturated with respect to native Au, with a saturation index of −3.8. The predominant As species was H3AsO30 (aq). Pyrite in the Shuiyindong deposit shows chemical zonation with rims richer in As and Au than cores, reflecting the chemical evolution of the ore-bearing fluids. The early ore fluids had relatively high activities of As and Au, to deposit unzoned and zoned arsenian pyrite that host most gold in the deposit. The ore fluids then became depleted in Au and As and formed As-poor pyrite overgrowth rims on gold-bearing arsenian pyrite. Arsenopyrite overgrowth aggregates on arsenian pyrite indicate a late fluid with relatively high activity of As. The lack of evidence of boiling and the low iron content of fluid inclusions in quartz, suggest that iron in arsenian pyrite was most likely derived from dissolution of ferroan minerals in the host rocks, with sulfidation of the dissolved iron by H2S-rich ore fluids being the most important mechanism of gold deposition in the Shuiyindong Carlin-type deposit.  相似文献   

14.
莱州寺庄金矿床位于焦家成矿带南段,是焦家金矿田的一部分,也是焦家成矿带上重要的热液脉型金矿床。区内主要有黄铁绢英岩带、黄铁绢英岩化花岗碎裂岩带和黄铁绢英岩化花岗岩带3个控矿带,位于焦家断裂带下盘。矿石矿物主要为银金矿、黄铁矿、自然金、黄铜矿、方铅矿和闪锌矿等。该矿床发育了绢英岩化、硅化、钾化、碳酸盐化等蚀变类型,且硅化和绢英岩化与矿化关系最为密切。本文从流体包裹体岩相学特征、显微测温、单个包裹体成分激光拉曼光谱分析以及氢、氧同位素分析方面对山东省寺庄金矿床成矿流体特征进行综合研究。结果显示:该矿床金矿石中主要发育含CO2相、气液两相和CO2相三类包裹体。在成矿过程中,流体经历了CO2-H2O-NaCl体系的不混溶作用。成矿流体具有低盐度(w(NaCl)为(0.53%~10.24%))、低密度(0.50~1.03 g/cm3)的特点。成矿温度为260~340℃,压力为82~116 MPa,成矿深度为中成(7.40~8.94 km)。氢、氧同位素分析成矿流体δDV-SNOW为-76.6‰~-69.0‰,δ18O为2.94‰~7.24‰,说明成矿流体以幔源流体为主,并有少量的岩浆水和大气降水参与。结合该矿床地质特征与实验结果综合分析,认为寺庄金矿的矿床成因类型为受断裂构造控制的幔源流体参与成矿的中温中成热液蚀变岩型金矿床。  相似文献   

15.
甘肃阳山金矿床微量元素及稳定同位素的地球化学研究   总被引:24,自引:1,他引:24  
甘肃省阳山金矿位于川陕甘交界地带 ,为近年发现的一特大微细浸染型金矿床。该矿目前已发现 4个矿段 ,均赋存于浅变质的泥盆系地层中。矿体在平面上呈舒缓波状 ,在剖面上为脉状、似层状。矿石中金属矿物主要为黄铁矿和毒砂 ,金主要以微细粒金 (2~ 3μm)包裹于毒砂、黄铁矿及粘土矿物之中。矿床微量元素含量研究表明 ,矿石中Au、Hg、As、Bi、Sb等元素较为富集 ,并且其间呈明显的正相关关系 ,显示阳山金矿的形成与富含Au、Hg、As、Bi、Sb等低温热液元素的成矿流体活动有关 ,向深部这些元素含量趋于降低 ,表明成矿流体活动趋弱。矿石石英的δD值为 - 6 0‰~ - 72‰ ,δ18OH2 O值为 8 0‰~ 10 1‰ ,表明成矿流体主要为岩浆热液 ;矿石黄铁矿的δ3 4 S值为 - 2 2‰~ - 0 7‰ ,不同于泥盆系地层中沉积黄铁矿的δ3 4 S值 (10 9‰ ) ,表明矿石硫为岩浆硫 ,因而阳山金矿床的形成与岩浆热液活动密切相关  相似文献   

16.
Formation conditions of orebodies and conditions of wolframite deposition at the Degana tungsten deposits in Rajasthan, India and the Tigrinoe tin-tungsten deposit in the Russian Far East were studied. Differences in the composition and state of fluid systems were established by microthermometric study of fluid inclusions (FI) and thorough petrographic examination of FI. At the Degana deposit, the ore veins in granite were formed from K-Na-Ca-(Mg, Fe, etc.) chloride solutions with a salinity up to 36 wt % NaCl equiv at a temperature of >420 to 120°C and under a pressure reaching 1550 bar. The formation temperature of the orebodies hosted in breccia reached 450°C and pressure was below 400 bar. The salinity of mainly Nachloride aqueous solutions was no higher than 18 wt % NaCl equiv. At the Tigrinoe deposit, the temperature during formation of quartz-wolframite-cassiterite veins varied from 420 to 240°C and the pressure was no higher than 300 bar. The salt concentration of Na-chloride solutions was 7-3 wt %. Wolframite crystallized at the very beginning of ore deposition. Probable sources of fluids are discussed. It is suggested that the factors controlling wolframite deposition could have been different even at the same deposit.  相似文献   

17.
在矿床地质和矿物流体包裹体研究的基础上,利用高真空惰性气体同位素质谱仪测定了闹枝铜金矿床硫化物中流体包裹体的稀有气体同位素组成。实验数据表明:3He/4He比值为0.033~0.104Ra,平均为0.061 Ra;20Ne/22Ne和21Ne/22Ne值分别为9.817~9.960和0.029 0~0.029 5,具有以大气组成为主的特征;40Ar/36Ar为324~349,平均为341,略高于饱和大气水(40Ar/36Ar=295.5)。流体包裹体3He/4He显示成矿流体来自壳源,不含幔源He;流体中除壳源放射性成因40Ar*外,有大气Ar的参与,放射性成因40Ar*的含量为8.8%~15.5%,平均为13.4%,大气40Ar的贡献为84.5%~91.2%,平均86.6%。结合稳定同位素特征和成岩成矿年代学研究成果,进一步厘定该矿床为相对独立的浅成中硫化型铜金矿床,成矿流体来自于年轻的大陆地壳流体,含矿流体上升过程中受到循环大气降水强烈混染作用,伴随温压条件的降低,成矿流体卸载有用元素,最终沉淀成矿。  相似文献   

18.
广西龙头山金矿床是大瑶山成矿带内重要的金矿床,矿区发育大量不同类型的黄铁矿。根据黄铁矿的产出特征,将黄铁矿划分为5个世代,对应着5个成矿阶段:电气石-石英-硫化物阶段(Ⅰ)、石英-黄铁矿-黄铜矿阶段(Ⅱ)、石英-多金属硫化物阶段(Ⅲ)、石英-黄铁矿-闪锌矿阶段(Ⅳ)、石英-黄铁矿阶段(Ⅴ)。不同阶段黄铁矿晶形均以{100}为主,少见{210};金含量与{210}含量呈正相关。黄铁矿晶胞参数为5.411 86~5.415 52,变化幅度不大,与钴含量呈正相关,主成矿阶段受金含量影响而变大。形貌及砷含量变化特征表明,{210}和金含量随砷含量降低而升高,说明砷含量降低利于{210}的出现,且金与砷不存在正相关关系。形貌特征及微量元素特征均反映主成矿阶段温度应220℃,且多集中于300℃的范围;δFe—δS图解及矿床地质特征表明,成矿热液主要为岩浆热液。综合分析认为,龙头山金矿床为中-高温岩浆期后热液矿床。  相似文献   

19.
丁坤  王瑞廷  刘凯  王智慧  申喜茂 《现代地质》2021,35(6):1622-1632
为了研究柞水—山阳矿集区夏家店金矿床成因,采用LA-ICP-MS和LA-MC-ICP-MS技术分析夏家店金矿床矿体及围岩样品中黄铁矿原位微量元素及氢、氧、硫同位素组成特征。结果表明,该矿床黄铁矿的Co/Ni 比值为0.11~0.76,说明其与沉积作用有关。矿石中黄铁矿的δ34S值(-9.40‰~7.16‰)与围岩碳质板岩的δ34S值(-8.84‰~10.64‰)接近,黄铁矿的δ34S均值(2.47‰)基本落在岩浆硫的范围内,指示矿石硫可能由地层硫和岩浆硫混合而成。氢、氧同位素测试结果表明,夏家店矿床成矿流体可能主要来自岩浆水,成矿后期有大气降水的加入。综合矿床地质特征、成矿温度、金赋存状态等特征和黄铁矿微量元素、硫同位素组成可知,夏家店金矿床属于卡林型金矿,其成矿流体主要来自岩浆水,成矿后期有大气降水加入;其成矿物质是由深部岩浆与地层混合而成。  相似文献   

20.
运用热力学原理和方法,研究了CO2-H2O流体不混溶作用对Au的溶解度的影响。结果表明,贵州水银洞金矿床的成矿流体是一种富含挥发分(fCO2=70.79MPa)、酸性(pH=3.71)、还原性(fO2=0.50×10-36MPa)、中温(267℃)、具有超压(180MPa)性质的含Au(a∑Au=3.744×10-8mol/L)流体。当超压流体的封闭层——炭质页岩因断裂作用而被破坏时,热液体系的压力发生骤降(28.50~35.30MPa),CO2-H2O流体发生不混溶作用,并有大量CO2溢出。CO2的流失可使成矿溶液的CO2逸度和O2逸度降低(fCO2=0.80MPa、fO2=2.512×10-42MPa),酸碱度升高(pH=4.32),同时伴随温度的下降(224℃),成矿热液中Au溶解度的降低(a∑Au=3.790×10-9mol/L),从而快速沉淀下来成矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号