首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Using the solar tower telescope of Nanjing University, we observed the two large loop prominence groups of 1982 Dec. 20 and 1983 Feb. 9. photographs and spectra around the and H and K lines were obtained simultaneously. From these data, we derived a line of sight velocity distribution, which agrees perfectly with the distribution for matter falling freely without viscosity. From the widths of the and the K lines, we found the loop material to have a uniform kinetic temperature and a turbulent velocity that increases with height. From the central intensities of the lines we derived a density of n(H) ? 1.3 ? 2.6 × 1010cm?3. A possible mechanism of the formation of loop prominence groups and their relation with flares are discussed.  相似文献   

2.
We construct the maps of temperatures, geometrical thicknesses, electron densities and gas pressures in a quiescent prominence. For this we use the RGB signal of the prominence visible-light emission detected during the total solar eclipse of 1 August 2008 in Mongolia and quasi-simultaneous Hα spectra taken at Ond?ejov Observatory. The method of disentangling the electron density and geometrical (effective) thickness was described by Jej?i? and Heinzel (Solar Phys. 254, 89?–?100, 2009) and is used here for the first time to analyse the spatial variations of prominence parameters. For the studied prominence we obtained the following range of parameters: temperature 6000?–?15?000 K, effective thickness 200?–?15000 km, electron density 5×109?–?1011 cm?3 and gas pressure 0.02?–?0.2 dyn?cm?2 (assuming a fixed ionisation degree n p/n H=0.5). The electron density increases towards the bottom of the prominence, which we explain by an enhanced photoionisation due to the incident solar radiation. To confirm this, we construct a two-dimensional radiative-transfer model with realistic prominence illumination.  相似文献   

3.
The thickness of the peak of the ionosphere depends primarily on the temperature T n of the neutral gas, and corresponds approximately to an α-Chapman layer at a temperature of 0.87T n. The overall slab thickness, as given by Faraday rotation measurements, is then τ =0.22 n + 7km. Expansion of the topside ionosphere, and changes in the E-andFl-regions increase τ by about 20 km during the day in summer. Near solar minimum τ is increased by a lowering of the O +/H + transition height; if the neutral temperature T n is estimated, this height can be obtained from observed values of τ.Hourly values of slab thickness were determined over a period of 6 yr at 34°S and 42°S. Near solar maximum the night-time values were about 260 km in all seasons. The corresponding neutral temperatures agree with satellite drag values; they show a semiannual variation of 14 per cent and a seasonal change of 5 per cent. Daytime values of τ were about 230 km in winter and 320 km in summer, implying a seasonal change of 30 per cent in T n. Temperatures increase steadily throughout the day in all seasons, with a rapid post-sunset cooling in summer. Downwards movements produce a large peak in τ at 0600 hr in winter. A large upwards flux, equal to about 40 per cent of the maximum (limiting) value, reduces τ for several hours after sunrise in winter. The slab thickness increases near solar minimum showing a reduction of the O +/H + transition height to about 700 km in summer and 500 km in winter.  相似文献   

4.
We present results of the dual-frequency radio sounding of the Venusian ionosphere carried out by the Venera 9 and 10 satellites in 1975. Thirteen height profiles of electron density for different solar zenith angles varying from 10 to 87° have been obtained by analyzing the refraction bending of radiorays in the sounded ionssphere. The main maximum of electron density at a height of 140–150 km depends on the solar zenith angle and is 1.4 to 5 × 105 cm?3. The lower maximum is determined definitely to be at ~130 km high. In the main and lower maxima the electron density variations with solar zenith angle are in good agreement with the Chapman layer theory. For the first time it is found that the height of the upper boundary for the daytime ionosphere (hi) depends regularly on the solar zenith angle. At Z < 60°, hi does not exceed 300 km while at Z > 60°, it increases with Z and comes up to ~ 600 km at Z ~ 80°.  相似文献   

5.
The data from OGO-5 and OSO-7 X-ray experiments have been compared with optical data from six chromospheric flares with filament disruption associated with slow thermal X-ray bursts. Filament activation accompanied by a slight X-ray enhancement precedes the first evidence of Hα flare by a few minutes. Rapid increase of the soft X-ray flux accompanies the phase of fastest expansion of the filament. Plateau or slow decay phases in the X-ray flux are associated with slowing and termination of filament expansion. The soft X-ray flux increases as F~(A + Bh) h, where h is the height of the disrupted prominence at any given time and A and B are constants. We suggest that the soft X-ray emission originates from a growing shell of roughly constant thickness of high-temperature plasma due to the compression of the coronal gas by the expanding prominence.  相似文献   

6.
7.
The existence of a critical height for quiescent prominences and its relationship to parameters of the magnetic field of photospheric sources are discussed. In the inverse-polarity model, stable equilibrium of a filament with a current is possible only in the region where the external field decreases with height no faster than ~1/h. Calculations of the potential magnetic field above the polarity-inversion line are compared with the observed prominence height. The prominence height is shown to actually depend on the vertical field gradient and does not exceed the level at which the exponent of field decrease is equal to unity.  相似文献   

8.
《Icarus》1986,66(2):366-379
We report ground-based laser heterodyne spectroscopy of non-thermal emission in the cores of the 10.33-μmR(8) and 10.72-μmP(32) lines of 12C16O2, obtained at 23 locations on the disk of Mars during the 1984 opposition, at Ls = 130°. The data were obtained at a sub-Doppler spectral resolution, and the temperature of the middle Martian atmosphere (50–85 km) is derived from the frequency width and intensity of the R(8) emission, and from the total intensity of the P(32) emission. We find that the temperature of the middle Martian atmosphere varies with latitude. Near the subsolar latitude, the average 50- to 85-km temperature is close to the radiative equilibrium value for a CO2 atmosphere. However, at high latitudes in both the northern (summer) and southern (winter) hemispheres the 50- to 85-km temperature exceeds the CO2 radiative equilibrium value; a meridional gradient in the range of 0.4 – 0.9°K per degree of latitude is indicated by our data. The highest temperatures are seen at high latitudes in the winter hemisphere, reminiscent of the seasonal effects seen at the Earth's mesopause. As in the terrestrial case, this winter polar warming in the Martian middle atmosphere necessitates departures from radiative equilibrium; dynamical heating of order 4 × 102 ergs g−1 sec−1 is required at the edge of the winter polar night. A comparison with 2-D circulation models shows that the presence of atmospheric dust may enhance this dynamical heating at high winter latitudes, and may also account for heating at high latitudes in the summer hemisphere.  相似文献   

9.
Homogeneous plane-parallel model atmospheres for solar flares have been constructed to approximately simulate observations of flares. The wings of the Ca II lines have been used to derive flare upper photosphere models, which indicate temperature increases of ~100 K over the temperature distribution in the pre-existing facula at a height of 300 km above τ5000 = 1. In the case of flares covering sunspots the temperature rise seems to occur much higher in the atmosphere. We solve the transfer and statistical equilibrium equations for a three-level hydrogen atom and a five-level calcium atom in order to obtain the chromospheric flare models. The general properties of flares, including n e, N 2, linear thickness, and Lyman continuum intensity are approximately reproduced. We find that with increasing flare importance the height of the upper chromosphere and transition region occur lower in the solar atmosphere, accounting for the factor of 60–600 increase in pressure in these regions relative to the quiet Sun. The Ca II line profiles agree with observations only by assuming a macro-velocity distribution that increases with height. Also the chromospheric parts of flares appear to be highly inhomogeneous. We show that shock and particle heated flare models do not agree with the observations and propose a thermal response model for flares. In particular, it appears that heating in the photosphere is an essential aspect of flares.  相似文献   

10.
Chemical kinetic model for the lower atmosphere of Venus   总被引:1,自引:0,他引:1  
A self-consistent chemical kinetic model of the Venus atmosphere at 0-47 km has been calculated for the first time. The model involves 82 reactions of 26 species. Chemical processes in the atmosphere below the clouds are initiated by photochemical products from the middle atmosphere (H2SO4, CO, Sx), thermochemistry in the lowest 10 km, and photolysis of S3. The sulfur bonds in OCS and Sx are weaker than the bonds of other elements in the basic atmospheric species on Venus; therefore the chemistry is mostly sulfur-driven. Sulfur chemistry activates some H and Cl atoms and radicals, though their effect on the chemical composition is weak. The lack of kinetic data for many reactions presents a problem that has been solved using some similar reactions and thermodynamic calculations of inverse processes. Column rates of some reactions in the lower atmosphere exceed the highest rates in the middle atmosphere by two orders of magnitude. However, many reactions are balanced by the inverse processes, and their net rates are comparable to those in the middle atmosphere. The calculated profile of CO is in excellent agreement with the Pioneer Venus and Venera 12 gas chromatographic measurements and slightly above the values from the nightside spectroscopy at 2.3 μm. The OCS profile also agrees with the nightside spectroscopy which is the only source of data for this species. The abundance and vertical profile of gaseous H2SO4 are similar to those observed by the Mariner 10 and Magellan radio occultations and ground-based microwave telescopes. While the calculated mean S3 abundance agrees with the Venera 11-14 observations, a steep decrease in S3 from the surface to 20 km is not expected from the observations. The ClSO2 and SO2Cl2 mixing ratios are ∼10−11 in the lowest scale height. The existing concept of the atmospheric sulfur cycles is incompatible with the observations of the OCS profile. A scheme suggested in the current work involves the basic photochemical cycle, that transforms CO2 and SO2 into SO3, CO, and Sx, and a minor photochemical cycle which forms CO and Sx from OCS. The net effect of thermochemistry in the lowest 10 km is formation of OCS from CO and Sx. Chemistry at 30-40 km removes the downward flux of SO3 and the upward flux of OCS and increases the downward fluxes of CO and Sx. The geological cycle of sulfur remains unchanged.  相似文献   

11.
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

12.
    
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

13.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

14.
The method of determination of heavy element abundances in H II regions (the strong-line method) uses the assumption that some combinations of strong emission line intensities in spectra of H II regions can serve as indicators of metallicities and electron temperatures in nebulosities. Three sets of strong lines are considered, namely, A (R 3, R 2, N 2, S 2 lines), B (R 3, R 2, N 2 lines), and C (R 3, N 2, S 2 lines). Strong line intensities are normalized to the H ?? intensity). We searched for an unambiguous relationship between strong emission line intensities of these line sets in spectra of H II regions and their compositions. The extensive model grid for H II regions is computed. Chemical compositions of nebulosities and intensities of A and C lines are shown to be related unambiguously. For the B line set, 5% of model H II regions do not have any unambiguous relationship, namely, the models with appreciably different oxygen and nitrogen abundances in H II regions can have similar intensities of the B set lines. The versions of strong-line method (calibrations) using the A and C lines are more reliable than those based on the B lines.  相似文献   

15.
On 27 June 2012, an eruptive solar prominence was observed in the extreme ultraviolet (EUV) and radio wavebands. At the Aalto University Metsähovi Radio Observatory (MRO) it was observed at 37 GHz. It was the first time that the MRO followed a radio prominence with dense sampling in the millimetre wavelengths. This prompted us to study the connection of the 37 GHz event with other wavelength domains. At 37 GHz, the prominence was tracked to a height of around \(1.6~\mathrm{R}_{\odot}\), at which the loop structure collapsed. The average velocity of the radio prominence was \(55 \pm 6~\mbox{km}\,\mbox{s}^{-1}\). The brightness temperature of the prominence varied between \(800 \pm 100\) K and \(3200 \pm 100\) K. We compared our data with the Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument’s 304 Å EUV data, and found that the prominence behaves very similarly in both wavelengths. The EUV data also reveal flaring activity nearby the prominence. We present a scenario in which this flare works as a trigger that causes the prominence to move from a stable stage to an acceleration stage.  相似文献   

16.
Data processing and interpretation of the nephelometer measurements made in the Venus atmosphere aboard the Venera 9, 10 and 11 landers in the sunlit hemisphere near the equator are discussed. These results were used to obtain the aerosol distribution and its microphysical properties from 62 km to the surface. The main aerosol content is found in the altitude range between 62 km (where measurements began) and 48 km, the location of the cloud region. Three prominent layers labeled as I (between 62 and 57 km), II (between 57 and 51 km) and III (between 51 and 48 km), each with different particle characteristics are discovered within the clouds. The measured light-scattering patterns can be intrepreted as having been produced by particles with effective radii from 1 to 2 μm depending on height and indices of refractivity from 1.45 in layer I to 1.42 in layer III. These values do not contradict the idea that the droplets are made of sulfuric acid. In layers II and III the particle size distribution is at least bimodal rather than uni-modal. The index of refraction is found to decrease to 1.33 in the lower part of layer II, suggesting a predominant abundance of larger particles of different chemical origin, and chlorine compounds are assumed to be relevant to this effect. In the entire heightrange of the Venera 9–11 craft descents, the clouds are rather rarefied and are characterized by a mean volume scattering coefficient σ ~ 2 × 10?5 cm?1 that corresponds to the mean meteorological range of visibility of about 2 km. The average mass content of condensate is estimated to be equal to 4 × 10?9 g/cm3, and the total optical depth of clouds to τ ~ 35. Near the bottom of layer III clouds are strongly variable. In the subcloud atmosphere a haze was observed between 48 and 32 km; that haze is mainly made of submicron particles, reff ~ 0.1μm. The atmosphere below that is totally transparent but separate (sometimes possibly disappearing) layers may be present up to a height of 8 km above the surface. A model of this region with a very low particle density (N ? 2–3 cm?3) strongly refractive large particles (reff ? 2.5 μm; 1.7 < n < 2.0) provided satisfactory agreement. The optical depth of aerosol in the atmosphere below the subcloud haze does not exceed 2.5.  相似文献   

17.
From the equations of classical tidal theory with Newtonian cooling (Chapman and Lindzen, Atmospheric Tides: thermal and gravitational, Reidel, 1970), formulae are obtained for wind, temperature and pressure oscillations generated by thermal, gravitational and lower-boundary excitations of given frequency. The analysis is an extension of that of Butler and Small (Proc. R. Soc. Lond.A274, 91, 1963) who formulated solutions of the vertical structure equation in terms of two independent solutions of the homogeneous equation and derived expressions for surface pressure oscillations. A comprehensive formulation is presented for wind, temperature and pressure oscillations as functions of height with the above-mentioned sources of excitation and an upper-boundary radiation condition. The formulae obtained are applied at the surface leading to evaluations of the surface oscillation weighting function Wp(z) which weights the thermal excitation at height z according to its differential contribution to the surface oscillation. The formulae are shown to simplify at heights above a region of excitation and evaluations are undertaken of the thermal response weighting function Wt(z) which weights the thermal excitation at height z according to its differential contribution to the oscillation at any height above the region of thermal excitation. Computational procedures are described for obtaining two independent solutions of the homogeneous equation and results are presented for an adopted profile of atmospheric scale height. The problem of deriving the surface pressure oscillation due to a tidal potential is briefly reviewed and results are presented as an example of the application of formulae that have been derived.  相似文献   

18.
The spectrophotometric (0.39 < λ < 0.7 λm) properties of three particle-size fractions (diameters <10 λm, <150 λm, and 420–850 λm) of sulfur have been investigated in the laboratory. Particle size, temperature, thermal history, and scattering geometry are all shown to influence the spectral reflectance of the normal (S8) sulfur samples and an “orange-colored” S8 sample produced by quenching molten sulfur. A scattering law consisting of a linear combination of lunar-like and Lambertian terms adequately describes the data for all particle sizes. Where sulfur is darkest (λ < 0.45 λm), the reflectance decreases with increasing particle size, whereas where sulfur is brightest (λ > 0.45 λm) the reflectance increases with decreasing particle size. In reflected light, the long wavelength edge of the strong ultraviolet absorption retreats smoothly to shorter wavelengths with decreasing temperature at ~1.6Å/°K, a value lower than the 2.2Å/°K value previously reported for transmitted light. Near opposition, sulfur powders are found to follow closely a Minnaert limb darkening law except where the reflectance is low, i.e., in the strong ultraviolet absorption band of the larger particle size fractions. It is clear from our data that quantitative comparisons between disk-integrated observations of Io and laboratory measurements of flat samples of sulfur are not adequate unless temperature effects and changes in scattering geometry are included.  相似文献   

19.
Almost simultaneous height sequences of 69 spicules in the Hα line have been studied. The spectra are obtained at six heights during 6 s on the east side of the solar disk with the 53-cm Lyot coronagraph of Abastumani Astrophysical Observatory. Radial velocities V r, total intensities or equivalent widths W, full widths at half maximum of intensity (FWHM) at all heights are determined (about 300 profiles of the Hα line). It is found that:
  1. Absolute values of radial velocities increase linearly with the height (see Equation (1));
  2. variation of the sign of the radial velocity along single spicules was never observed.
These results combined with the findings on the spicules radial velocities and shifts obtained earlier (Kulidzanishvili and Nikolsky, 1978; Nikolsky and Platova, 1970) led us to the conclusion that the 5-min tangential oscillations of spicules involve the entire spicule at once. The intensity height scales for single spicules and for the chromosphere ‘in toto’ are determined; they turned out to be 2.5 × 103 km and 1.9 × 103 km respectively (see Equations (2) and (3)). The dependence curve of the Hα line half-widths Δλ on the height h is drawn. The Hα line half-width for those spicule groups which are traced at all heights (10 spicules) decreases with the height (Figure 4); for the majority (~60 spicules) it remains essentially constant. Non-thermal ‘turbulent’ velocities V t, in Hα spicules are defined. A mean value of the ‘turbulent’ velocity V t at T = 6000° appeared to be 20–30km s?1. The hydrogen concentration in the spicules at 5000 km is 6 × 1011 cm?3.  相似文献   

20.
Calculations using a wide range of model ionospheres (with a peak at 300 km) show that the integrated electron content up to the height of the satellite could be up to four times the value deduced from Faraday rotation measurements. However, using a fixed mean field height of 400 km, the observed Faraday rotation gives the electron content up to a height hF of 2000 km with an accuracy of ±3 per cent. For observations at different magnetic and geographic latitudes, and geostationary satellites at different longitudes, the optimum value of hF varies by only ±200 km. Night-time increases in the height of the ionosphere have little effect on hF, but increase the mean field height to about 470 km. Using a fixed value of 420 km, with hF = 2000 km, gives an accuracy of ±5 per cent under most conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号