首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Quantitative research on composition, biomass and production rates of zooplankton community is crucial to understand the trophic structure in coral reef pelagic ecosystems. In the present study, micro‐ (35–100 μm) and net‐ (>100 μm) metazooplankton were investigated in a fringing coral reef at Tioman Island of Malaysia. Sampling was done during the day and night in August and October 2004, and February and June 2005. The mean biomass of total metazooplankton (i.e. micro + net) was 3.42 ± 0.64 mg C·m?3, ranging from 2.32 ± 0.75 mg C·m?3 in October to 3.26 ± 1.77 mg C·m?3 in August. The net‐zooplankton biomass exhibited a nocturnal increase from daytime at 131–264% due to the addition of both pelagic and reef‐associated zooplankton into the water column. The estimated daily production rates of the total metazooplankton community were on average 1.80 ± 0.57 mg C·m?3·day?1, but this increased to 2.51 ± 1.06 mg C·m?3·day?1 if house production of larvaceans was taken into account. Of the total production rate, the secondary and tertiary production rates were 2.20 ± 1.03 and 0.30 ± 0.06 mg C·m?3·day?1, respectively. We estimated the food requirements of zooplankton in order to examine the trophic structure of the pelagic ecosystem. The secondary production may not be satisfied by phytoplankton alone in the study area and the shortfall may be supplied by other organic sources such as detritus.  相似文献   

2.
An in situ chamber of volume 3881 and bottom area 0·64 m2 was used to determine the flux of oxygen and inorganic nutrients across an estuarine sediment-water interface over a 65-day period. Over the first 7 days, oxygen uptake was 378 mg m?2 day?1 and the rates of ammonium and phosphate release were 2·22 and 0·34 mg at. m?2 day?1, respectively. The water became anoxic in 14 days.The rates of flux in a similar chamber containing only detritus recently settled from the water column were 371 mg m?2 day?1 (oxygen), 1·66 mg at. m?2 day?1 (ammonium) and 0 12 mg at. m?2 day?1 (phosphate), demonstrating that detritus contributes substantially to exchange across the sediment-water interface.The evolution of the two chambers was similar over the latter part of the experimental period. A third chamber containing only water exhibited very minor changes.The role of detritus in nutrient recycling at the sediment-water interface is discussed in relation to the productivity of shallow water bodies such as the estuary in which the experiment was conducted, which itself undergoes periodic deoxygenation during prolonged stratification. The measured flux of nitrogen across the interface was found to represent approximately 31% of the mean daily phytoplankton requirement.  相似文献   

3.
Sulphate reduction rates were measured in the lagoon sediments at Davies Reef, on the Great Barrier Reef, Australia. Sulphate reduction rates averaged 0·622 mmol sulphate m−2 day−1, over the 0–12 cm depth of sediment, compared to an average heterotrophic oxygen uptake rate by the sediment of 27 mmol oxygen m−2 day−1. Thus sulphate reduction to acid-volatile sulphide appeared to account for only about 5% of the total organic matter degradation, although the proportion may be greater if sulphate reduction to tin-reducible sulphide was taken into account. Although dissolved sulphate concentration in the sediment pore water was that of sea water, a large excess (equivalent to about 0·8% of the sediment dry weight) of precipitated sulphate was present in the sediment. This excess could not be attributed to precipitated strontium sulphate, and there was no exchange between the dissolved and precipitated sulphate. Methane formation in these superficial sediments was not detectable.  相似文献   

4.
Sediments from the lower Hudson River estuary and two other coastal environments were examined experimentally for their ability to mineralize (convert to CO2) the polycyclic aromatic hydrocarbons (PAHs) naphthalene and anthracene over a range of salinities. Routine assays employed 1:1 (vol fresh sed:vol water) sediment slurrys in order to overcome natural variability in mineralization rates among replicates. Mineralization rates were stimulated by about 2·5 fold, compared to unslurried controls, while the coefficient of variation fell from 13% to 3·5%.Rates of naphthalene mineralization in surface sediments from along the mainstem of the Hudson River (salinities from 2 to 27%) ranged from 0·011 to 1·5 nmol cm−3 day−1 (pool turnover [Tn] from 60 to 2040 days) with no discernible trends along the estuarine gradient. For two stations examined experimentally (mile point 5, salinity 23%; mile point 26, salinity 5%), microbial assemblages appeared acclimated to broad salinity variations as alter rates of mineralization compared to controls.Sediments from two upstream marshes of the Hudson (mile points 36 and 45) showed rates of naphthalene mineralization from 0·007 to 0·15 nmol cm−3 day−1 (Tn from 14 to 368 days), while sediments from a third marsh in freshwater (mile point 76) had high rates (66 nmol cm−3 day−1; Tn 40 days). For the two upstream marsh stations which rarely experienced salt intrusion, there was a substantial decrease in mineralization of naphthalene and anthracene with increasing salinity.Consistently high rates of naphthalene mineralization (780 to 1600 nmol cm−3 day−1; Tn 5 to 6 days) were observed in petroleum contaminated sediments from Port Jefferson Harbor (PJH) on the north shore of Long Island. PJH has a relatively constant salinity regime (about 27%) and imposed decreases in salinity effected decreases in rates of naphthalene and anthracene mineralization. Lowest rates of naphthalene mineralization (0·003 to 0·004 nmol cm−3 day−1; Tn from 714 days to 833 days) were found in sediments from two stations in the relatively pristine Carmans River estuary on the south shore of Long Island.The ability of increases or decreases in salinity to affect the rate of model PAH mineralization appeared to be dependent on the natural variation in the salinity regime from which a sample was obtained. Data from all the environments studied indicated a strong positive correlation between PAH concentration and the rates of mineralization of naphthalene. Rates of PAH mineralization in all environments examined appear to be primarily controlled by the extent of pollutant loading and not by natural variations in the salinity regime.  相似文献   

5.
The Cape rock lobster Jasus lalandii is a major predator in the inshore Benguela system. The mean density and biomass at Oudekraal is 0,48 individuals ·m?2 or 49,75 g dry mass ·m?2. The main component of its diet is Aulacomya ater, the ribbed mussel, which has a mean biomass of 1,15 kg dry mass ·m?2. Daily consumption of carbon and nitrogen from this source reaches a maximum in summer and, when J. lalandii feed on mussels, 14,1 per cent of the flesh is lost to the environment as a result of "messy feeding". The absorption efficiency of ingested nitrogen is 86,2 per cent. Ammonia and urea excreted in the first 12 h after feeding represent 6,7 and 1,6 per cent respectively of the nitrogen ingested. Endogenous nitrogen excretion has a mean rate of 1,9 μg N·g (dry mass)?1·h?1 The range of estimates for combined figures of kelp and phytoplankton nitrogen requirements are 76,4 – 86,7 g N·m?2·year?1 J. lalandii returns 6,3 g N·m?2·year?1 to the system, accounting for 7,2 – 8,2 per cent of annual kelp and phytoplankton requirements. This could be of particular importance during downwelling when the supply of new nitrogen is limited.  相似文献   

6.
The temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DW·m−2·day−1) was higher than that in Z. japonica (1.7 ± 0.2 g DW·m−2·day−1). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above‐ground biomass in both species.  相似文献   

7.
Resuspension of bottom sediments accounted for 69–92% of mean deposition rates (11·6–69·3 gm?2 day?1) measured at 5 sites in the Peel-Harvey Estuarine System, Western Australia. Deposition rates at all but one of the sites were found to be correlated (P<0·05) with a function of wind combining a fetch factor with the number of hours of winds greater than 5 ms?1 weighted by the third power of wind velocity. The exception was the only site with a cover of benthic algae (Cladophora) during the study. Wind-related resuspension greatly affects the forms and amounts of productivity in this system.  相似文献   

8.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

9.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

10.
The biomass and productivity of phytoplankton populations inshore on the west coast of South Africa were investigated towards the end of the upwelling season, a period when high-biomass dinoflagellate blooms are common. Productivity was estimated from natural fluorescence measurements (PNF ), using photosynthesis (P) v. irradiance (E) relationships (PE ) and by means of the in situ 14C-method (PC ) A linear regression of PNF productivity against PC and PE productivities yielded a slope of 0.911 and an r 2 of 0.83 (n = 41). Physical and biological variability was high inshore, reflecting alternating periods of upwelling and quiescence. Mean chlorophyll inshore (within a 12 m water column) ranged from 0.7 to 57.8 (mean = 8.9) mg·m&minus3, mean PNF productivity ranged from 8.4 to 51.0 (mean = 24.6) mgC·m?3·h?1 and daily integral PNF productivity from 0.8 to 4.8 (mean = 2.3) gC·m?2·day?l. Transects sampled during active and relaxation phases of upwelling had different chlorophyll distributions. High chlorophyll concentrations (sometimes >50 mg·m?3) were associated with surface blooms within the region of the upwelling front. Estimates of daily water-column PNF productivity within these frontal blooms ranged from 4.0 to 5.6 gC·m?2·day?1. With relaxation of wind stress, blooms dominated by dinoflagellates flooded shorewards and often formed red tides. Chlorophyll concentrations of > 175 mg·m?3 and productivity rates > 500 mgC·m?3·h?1 and 12 gC·m?2·day?1 were measured during a particularly intense red tide. Offshore, the water column was highly stratified with a well-defined subsurface chlorophyll maximum layer within the pycnocline region. Estimates of daily water-column PNF productivity ranged from 2.4 to 4.0 gC·m?2·day?1 offshore. The high productivity of shelf waters on the West Coast in late summer can be ascribed largely to dinoflagellate populations and their success in both upwelling systems and stratified conditions.  相似文献   

11.
Volumes of seawater filtered through the intertidal zone were measured on three modally reflective microtidal beaches in Western Australia. The filtered volumes were large, 19 m3 m?1 day?1 and 73 m3 m?1 day?1 on two ‘clean’ beaches but only 0·4 m3 m?1 per tidal cycle on a beach covered in kelp and seagrass wrack. The mean residence times of this water in the interstitial system and its percolation paths were both short, 1–7 h and 2–5 m respectively. Water input was greater across a beach cusp horn than across a cusp embayment. Most input occurred in the upper swash zone where the water table was less than 20 cm deep. Tidal variations in input volumes were evident even with tide ranges of only 20 cm. The inshore zone off these beaches filters on average 0·07 m3 m?2 day?1 at an average depth of 5·5 m under 0·4 m waves of 6·5 s duration. The importance of these procedures in the mineralization of organic materials and the regeneration of nutrients for an inshore ‘lagoon ecosystem’ is estimated and discused.  相似文献   

12.
Umbonium vestiarium (L.) was found to dominate intertidal sand with a mean 11 808 m−2 (95·4 g tdw m−2), excluding virtually all other invertebrate fauna. Whilst spawning occurs from mid-March to August, substantial recruitment seems limited to March–May, first on the lowest levels, and then upshore as the young grow to 5–6 mm by June and as the growing young move upshore.The number of ovarian eggs varied in broad accordance with total tissue dry weight: both numbers of ovarian eggs and total dry weight in females and males increased in periods between bouts of spawning but fell during substantial spawning which was mostly close to neap tides. The relationships between planktonic-egg counts, ovarian-egg counts and tissue dry weight, together with direct weighings of ovarian eggs, suggest (a) mature eggs weigh about 2·5 μg each (dry weight), (b) 10-mm females each produced about 8800 eggs (22 mg) in the 79-day observation and probably 17 000–19 000 eggs (44 g) in the total spawning period (March–August), (c) the population as a whole produced about 30 × 106 eggs m−2 (75 g m−2) in the 79 days and probably around 60 × 106 eggs m−2 (150 g m−2) plus a similar quantity of semen in March–August, giving a total reproductive output of aproximately 300 g m−2 year−1.As Umbonium lives for only about one year with apparently one annual major period of spawning and recruitment, it is proposed that high reproductive output, large eggs and reduced larval dispersal may be adaptively related to the short lifespan on comparatively unstable and isolated habitats. These features are likely to have significant effects upon the genetic heterogeneity of Umbonium populations across its great Indo-West Pacific range.  相似文献   

13.
Phytoplankton productivity, community composition and biomass were determined over a nine-month period in brackish waters of the lower Gunpowder River, a tributary of Chesapeake Bay. Primary productivity followed expected seasonal magnitudes for temperate estuaries with rates exceeding 142·4 mg C m?3 h?1 in July through September 1979 and minimum rates of 1·6 mg C m?3 h?1 in February 1980. Annual primary production was estimated at 45·5 gC m?2. Cell numbers were highest in August, September and November with cyanophytes dominating the planktonic algae. Primary productivity, chlorophyll concentrations and cell densities were dominated by nanoplanktonic forms (< 10 μm) through-out the study. Phytoplankton carbon calculated from cells volumes exceeded nutritional requirements of the pelagic herbivores in all months suggesting a mean daily export (to the bay or sediments) of 1607 mg C m?3 d?1.  相似文献   

14.
江苏小庙洪牡蛎礁大型底栖动物多样性及群落结构   总被引:1,自引:1,他引:0  
基于2011年春季的生态调查资料,报道了江苏小庙洪自然潮间带牡蛎礁大型底栖动物的多样性及其群落结构。通过16SrDNA基因序列分析发现,在小庙洪牡蛎礁内分布有3种牡蛎(熊本牡蛎Crassostrea sikamea、近江牡蛎C.ariakensis和密鳞牡蛎Ostrea denselamellosa),其中分布于潮间带区的造礁活体牡蛎为熊本牡蛎,其平均密度和生物量分别为(2199±363)ind/m2和(12361±1645)g/m2。在该牡蛎礁内记录到定居性大型底栖动物(不包括3种牡蛎)共计43科66种,礁体大型底栖动物的总栖息密度和生物量分别达到(2830±182)ind/m2和(499.59±35.41)g/m2,显著高于邻近的软相潮间带泥(沙)质滩涂[密度(102±29)ind/m2;生物量(53.10±22.80)g/m2]和潮下带泥滩[密度(140±60)ind/m2;生物量(43.23±22.37)g/m2](P<0.001)。  相似文献   

15.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

16.
《Marine Chemistry》2001,73(3-4):291-303
Oxygen and phosphate measurements from two sections across the Norwegian Atlantic Current, the Gimsøy-NW section from 67.5°N 9°E to 71.5°N 1°E and the Bjørnøya-W section along 74.5°N from 7 to 15°E, are used to estimate oxygen fluxes in the surface layer and between the atmosphere and the ocean. Vertical entrainment velocities of 0.9 m day−1 for the winter season and 0.1 m day−1 for the summer season are found and applied to the upper 300 m. The resulting oxygen fluxes to the surface layer driven by this vertical mixing are 0.58±0.05 and 0.27±0.02 mol O2 m−2 year−1 at the Gimsøy-NW and Bjørnøya-W sections, respectively. Oxygen fluxes to the surface layer due to phytoplankton production are 2.6 and 3.4 mol O2 m−2 year−1, which represent the net community production at the two sections. Estimated uncertainties in these numbers are ±15%. The surface water is a sink for atmospheric oxygen during fall and winter and a source during the productive season for both sections. On an annual basis there is a net uptake of oxygen from the atmosphere, 3.4±0.4 mol O2 m−2 year−1 at the Gimsøy-NW section and 4.9±0.5 mol O2 m−2 year−1 at the Bjørnøya-W. A decrease in temperature of 1°C to 1.5°C seen between the Gimsøy-NW section and the Bjørnøya-W section is the main reason for the increased atmospheric flux of oxygen at the latter section. An oxygen budget made for the area bounded by the two sections gives a net advective flux of oxygen out of the area of approximately 10 mol O2 m−2 year−1. The increased concentration of oxygen corresponding to the decrease in surface layer temperatures going northwards in the Norwegian Atlantic Current is mainly attributed to the air–sea oxygen exchange and phytoplankton production in this area.  相似文献   

17.
Growth rates of two halophilic phytoflagellates, Dunaliella euchlora Lerche and D. salina Teodoresco, were studied in mixed batch cultures grown in filtered, axenic brines from Lake Grassmere, New Zealand. Forty‐five combinations of temperature, salinity, and light intensity were used. A maximum growth rate of 1.50 doublings day‐1 was attained by D. salina at 26°C, 190 × 10‐3S at a light intensity of 126 μE m‐2 s‐1. D. euchlora showed maximum growth rate of 1.16 doublings day‐1 at 20°C, 120 × 10‐3S at a light intensity of 180 μE m‐2s‐1. Predicted maximum values of 1.41 and 1.14 doublings day‐1 respectively were obtained from regression models based on 45 replicate treatment combinations. In decreasing order of importance, temperature, salinity, and light intensity influence growth rates of brine algae. The optimum temperature for growth of both species increased as the salt concentration increased but decreased with increasing light intensity.  相似文献   

18.
《Marine Chemistry》2005,93(2-4):131-147
Data on the distribution of dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) were obtained during a cruise in the North Sea during late summer 2001. A 1° by 1° grid of 97 stations was sampled for DIC while the pCO2 was measured continuously between the stations. The surface distributions of these two parameters show a clear boundary located around 54°N. South of this boundary the DIC and pCO2 range from 2070 to 2130 μmol kg−1 and 290 to 490 ppm, respectively, whereas in the northern North Sea, values range between 1970 and 2070 μmol kg−1 and 190 to 350 ppm, respectively. The vertical profiles measured in the two different areas show that the mixing regime of the water column is the major factor determining the surface distributions. The entirely mixed water column of the southern North Sea is heterotrophic, whereas the surface layer of the stratified water column in the northern North Sea is autotrophic. The application of different formulations for the calculation of the CO2 air–sea fluxes shows that the southern North Sea acts as a source of CO2 for the atmosphere within a range of +0.8 to +1.7 mmol m−2 day−1, whereas the northern North Sea absorbs CO2 within a range of −2.4 to −3.8 mmol m−2 day−1 in late summer. The North Sea as a whole acts as a sink of atmospheric CO2 of −1.5 to −2.2 mmol m−2 day−1 during late summer. Compared to the Baltic and the East China Seas at the same period of the year, the North Sea acts a weak sink of atmospheric CO2. The anticlockwise circulation and the short residence time of the water in the North Sea lead to a rapid transport of the atmospheric CO2 to the deeper layer of the North Atlantic Ocean. Thus, in late summer, the North Sea exports 2.2×1012 g C month−1 to the North Atlantic Ocean via the Norwegian trench, and, at the same period, absorbs from the atmosphere a quantity of CO2 (0.4 1012 g C month−1) equal to 15% of that export, which makes the North Sea a continental shelf pump of CO2.  相似文献   

19.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

20.
Recent studies suggest a future increase in sponge bioerosion as an outcome of coral reef decline around the world. However, the factors that shape boring sponge assemblages in coral reefs are not currently well understood. This work presents the results of a 17‐month assessment of the presence and species richness of boring sponges in fragments collected from living corals, dead coral reef matrix and coral rubble from Punta de Mita and Isabel Island, two coral reefs from the central coast of the Mexican Pacific Ocean. Both localities have a high cover of dead corals generated by past El Niño Southern Oscillation events, but Punta de Mita was also highly exposed to anthropogenic impacts. Additionally, environmental factors (water transparency, water movement, temperature, sediment deposition, SST, and chlorophyll concentration) were assessed to test the hypothesis that environmental conditions which are potentially harmful for corals can enhance sponge bioerosion. Isabel Island and Punta de Mita showed a similar species richness (13 and 11 species, respectively) but boring sponge presence in both live and dead corals was higher at Isabel Island (57.6%) than at Punta de Mita (35.7%). The same result was obtained when each type of substrate was analysed separately: dead coral reef matrix (81.3% versus 55.5%), coral rubble (47.7% versus 20.0%) and living corals (43.7% versus 31.7%). A principal components analysis showed a higher environmental heterogeneity at Punta de Mita, as well as important environmental differences between Punta de Mita and Isabel Island, due to sediment deposition (2.0 versus 0.2 kg·m?2·d?1) and water movement (24.5% versus 20.5% plaster dissolution day?1), that were also negatively correlated with boring sponge presence (r = ?0.7). By analysing the boring sponge assemblage, we found that environmental settings, together with habitat availability (i.e., dead coral substrate) differentiated assemblage structure at both localities. Major structural differences were largely due to species such as Cliona vermifera, Cliona tropicalis and Aka cryptica. In conclusion, factors such as habitat availability favored the presence of boring sponges but some environmental factors such as abrasion resulting from moving sediment acted restrictively, and exerted a major role in structuring boring sponge assemblages in the Mexican Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号