首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当背景磁场在日冕中存在零磁场线时,反向新磁通量的喷发将会产生双重电流片,包括零场区附近的磁场受到挤压而形成的横向电流片和新喷发场、原背景场之间形成的拱形电流片、本文用一对线偶极子来模拟背景场,用一对线磁荷来模拟反向喷发场,讨论了上述双重电流片的形成和演变过程。在电流片形成过程中,物质将向电流片集中。拱形电流片物质主要来自过渡层和光球层,并通过辐射损失进一步冷却,形成低温日珥环;横向电流片的物质则全部来自日冕,从而形成高温日冕环。以上结果可用来解释1984年4月14日观测到的日冕瞬变。  相似文献   

2.
We present detailed observations of the formations of four distinct coronal dimmings during a flare of 17 September 2002, which was followed by an eruption of a huge coronal loop system, and then an over-and-out partial halo coronal mass ejection (CME), with the same direction as the loop system eruption but laterally far offset from the flare site. Among the four dimmings, two compact ones were symmetrically located in the opposite polarity regions immediately adjacent to the highly sheared magnetic polarity inversion line in the flare region, and hence were probably composed of bipolar double dimmings due to a flux-rope eruption and represented its evacuated footpoints. However, another nearby compact dimming and a remote diffuse one were formed in the opposite polarity footpoint regions of the eruptive loop system, and thus probably consisted of a pair of dimmings magnetically linked by the erupting loop system and also indicated its evacuated footpoints. The loop system might have played a role in guiding the erupting flare field and producing the over-and-out CME, but its eruption might simply have been pushed out by the erupting flare field, because there was no reconnection signature between them. From comparison with a derived potential-field source-surface (PFSS) magnetic configuration, our observations consistently suggest that the dimmings were formed in pairs and originated from the eruptions of the two different magnetic systems. We thus define them as “quadrupolar dimmings.”  相似文献   

3.
A model is presented for the penetration into the corona of a new magnetic field of a developing bipolar region and for its interaction with an old large-scale coronal field. An important feature of the model is a reconnection of the old and new fields inside the current sheet arising along the zero line of the total magnetic field calculated in the potential approximation. The magnetic reconnection and accumulation of plasma inside the current sheet can explain the appearance of dense coronal loops and the energy source at their tops. The plasma together with the magnetic lines is flowed into the sheet from both its sides. This fact explains the appearance of coronal cavities above the loops. If the large-scale field gradually decreases with the height, the loop motion is slowed down. The account of the dipolar structure of the magnetic field at large heights explains the possibility of a rapid break of the new field through the corona and the appearance of transients and open field regions - the coronal holes. In this case a fast rising current sheet can be a source of accelerated particles and of type II radio burst, instead of the shock wave considered usually.  相似文献   

4.
A double current sheet forms when an opposite magnetic flux emerges into a background magnetic field which has a zero field-line in the corona. It consists of an upper sheet, resulting from the squeezing of field lines near the original zero field region and a lower sheet formed in the region between the new and old fields. We use a pair of linear dipoles to model the background and a pair of line charges to model the emerging field and discuss the formation and evolution of the double current sheet. Matter will condense onto the sheets during their formation. The matter in the lower sheet comes mainly from the transition region and the photosphere; it is further cooled by radiation, giving rise to a low-temperature prominence loop. The matter in the upper sheet comes from the corona and forms a high-temperature coronal loop.This scenario seems to be realized in the coronal transient of 1984 April 14.  相似文献   

5.
本文对盔状冕流底部磁通量喷发的大气响应进行数值模拟。数值结果表明:在喷发磁场的作用下,原冕流中的物质将受到压缩并向上运动,形成高密度亮环结构,同时在环的前方出现快磁声波,在环的下方出现低密度暗区。据此我们认为,磁通量喷发可能是触发环形日冕物质喷射的一种重要机制。  相似文献   

6.
We report on the occurrence of Hα dimming associated with a sigmoid eruption in a quiet-sun region on 14 August 2001. The coronal sigmoid in soft X-ray images from the Yohkoh Soft X-ray Telescope was located over an Hα filament channel. Its eruption was accompanied by a flare of GOES X-ray class C2.3 and possibly associated with a halo coronal mass ejection (CME) observed with the Large Angle and Spectroscopic Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO). During the eruption, coronal bipolar double dimming took place at the regions with opposite magnetic polarities around the two sigmoid ends, but the underlying chromospheric channel did not show observable changes corresponding to the coronal eruption. Different from the erupting coronal sigmoid itself, however, the coronal dimming had a detectable chromosphere counterpart, i.e., Hα dimming. By regarding the sigmoid as a coronal sign for a flux rope, these observations are explained in the framework of the flux rope model of CMEs. The flux rope is possibly deeply rooted in the chromosphere, and the coronal and Hα dimming regions mark its evacuated feet, through which the material is possibly fed to the halo CME.  相似文献   

7.
We describe the interplanetary coronal mass ejections (ICMEs) that occurred as a result of a series of solar flares and eruptions from 4 to 8 November 2004. Two ICMEs/magnetic clouds occurring from these events had opposite magnetic orientations. This was despite the fact that the major flares related to these events occurred within the same active region that maintained the same magnetic configuration. The solar events include a wide array of activities: flares, trans-equatorial coronal loop disappearance and reformation, trans-equatorial filament eruption, and coronal hole interaction. The first major ICME/magnetic cloud was predominantly related to the active region 10696 eruption. The second major ICME/magnetic cloud was found to be consistent with the magnetic orientation of an erupting trans-equatorial filament or else a rotation of 160° of a flux rope in the active region. We discuss these possibilities and emphasize the importance of understanding the magnetic evolution of the solar source region before we can begin to predict geoeffective events with any accuracy.  相似文献   

8.
We have employed a two-dimensional magnetohydrodynamic simulation code to study mass motions and large-amplitude coronal waves related to the lift-off of a coronal mass ejection (CME). The eruption of the filament is achieved by an artificial force acting on the plasma inside the flux rope. By varying the magnitude of this force, the reaction of the ambient corona to CMEs with different acceleration profiles can be studied. Our model of the ambient corona is gravitationally stratified with a quadrupolar magnetic field, resulting in an ambient Alfvén speed that increases as a function of height, as typically deduced for the low corona. The results of the simulations show that the erupting flux rope is surrounded by a shock front, which is strongest near the leading edge of the erupting mass, but also shows compression near the solar surface. For rapidly accelerating filaments, the shock front forms already in the low corona. Although the speed of the driver is less than the Alfvén speed near the top of the atmosphere, the shock survives in this region as well, but as a freely propagating wave. The leading edge of the shock becomes strong early enough to drive a metric type II burst in the corona. The speed of the weaker part of the shock front near the surface is lower, corresponding to the magnetosonic speed there. We analyze the (line-of-sight) emission measure of the corona during the simulation and recognize a wave receding from the eruption site, which strongly resembles EIT waves in the low corona. Behind the EIT wave, we clearly recognize a coronal dimming, also observed during CME lift-off. We point out that the morphology of the hot downstream region of the shock would be that of a hot erupting loop, so care has to be taken not to misinterpret soft X-ray imaging observations in this respect. Finally, the geometry of the magnetic field around the erupting mass is analyzed in terms of precipitation of particles accelerated in the eruption complex. Field lines connected to the shock are further away from the photospheric neutral line below the filament than the field lines connected to the current sheet below the flux rope. Thus, if the DC fields in the current sheet accelerate predominantly electrons and the shock accelerates ions, the geometry is consistent with recent observations of gamma rays being emitted further out from the neutral line than hard X-rays.  相似文献   

9.
We study an active region coronal jet that evolved from southward of a major sunspot of NOAA AR12178 on 04 October 2014. This jet is associated with an onset of the GOES C1.4 flare. We use SDO/AIA, SDO/HMI, GONG \(H\upalpha\) and GOES data for analysing the observed event. We term this jet as a two-stage confined eruption of the plasma. In the first stage, some plasma erupts above the compact flaring region. In the second stage, this eruptive jet plasma and associated magnetic field lines interact with another set of distinct magnetic field lines present in its south-east direction. This creates an X-point region, where the second stage of the jet eruption is deflected above it on a curvilinear path into overlying corona. The lower part of the jet is followed by a cool surge eruption, which is visible only in \(H{\upalpha}\) emissions. The magnetic flux cancellation at the footpoint causes the triggering of C-class flare eruption. This flare energy release further triggers first stage of the coronal jet eruption. The second stage of the jet eruption is a consequence of an interaction of two distinct sets of magnetic field lines in the overlying corona. The first stage of the coronal jet and co-spatial but lagging cool surge may have common origin due to the reconnection generated heating pulses. This complex evolution of the coronal jet involves flare heating induced first stage plasma eruption, guiding of jet’s material above a junction of two distinct sets of field lines in the corona, and intra-relationship with cool surge. In effect, it imposes rigid constraints on the existing jet models.  相似文献   

10.
Luhmann  J.G.  Li  Yan  Zhao  Xuepu  Yashiro  Seiji 《Solar physics》2003,213(2):367-386
Most work on coronal mass ejection (CME) interpretation focuses on the involved active region rather than on the large-scale coronal context. In this paper a global potential-field source-surface model of the coronal magnetic field is used to evaluate the sensitivity of the coronal field configuration to the location, orientation, and strength of a bipolar active region relative to a background polar field distribution. The results suggest that the introduction of antiparallel components between the field of the active region and the background field can cause significant topological changes in the large-scale coronal magnetic field resembling observations during some simple CMEs. Antiparallel components can be introduced in the real corona by the diffusion and convection of photospheric fields, flux emergence, or erupted or shear-induced twist of active-region fields. Global MHD models with time-dependent boundary conditions could easily test the stability of such configurations and the nature of any related transients.  相似文献   

11.
C. Zhu  D. Alexander  X. Sun  A. Daou 《Solar physics》2014,289(12):4533-4543
We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.  相似文献   

12.
13.
Catastrophe of coronal magnetic rope embedded in a partly open multipolar background magnetic field is studied by using a 2-dimensional, 3-component ideal MHD model in spherical coordinates. The background field is composed of three closed bipolar fields of a coronal streamer and an open field with an equatorial current sheet. The magnetic rope lies below the central bipolar field, and it is characterized by its annular and axial magnetic fluxes. For a given annual flux, there is a critical value of the axial flux, and for a given axial flux, there is a critical value of annual flux such that, below the critical value, the magnetic rope is attached to the solar surface and the system stays in equilibrium, but when the critical value is exceeded, the magnetic rope breaks free and erupts upward. This implies that catastrophe can occur in a coronal magnetic rope embedded in a partly open multipolar background magnetic field. Our computation gives a threshold value of magnetic energy that is about 15% greater than the energy of the partly open magnetic field (the central bipolar field open and the fields on either side closed). The excess energy may serve as source for solar explosions such as coronal mass ejections.  相似文献   

14.
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.  相似文献   

15.
J. Y. Ding  Y. Q. Hu  J. X. Wang 《Solar physics》2006,235(1-2):223-234
A major solar active event called Bastille Day Event occurred in AR 9077 on July 14, 2000. Simultaneous occurrence of a filament eruption, a flare and a coronal mass ejection was observed in this event. Previous analyses of this event show that before the event, there existed an activation and eruption of a huge trans-equatorial filament, which might play a crucial role in triggering the Bastille Day event. This implies that independent flux systems are closely related to and affect each other, which has encouraged us to investigate the catastrophic behavior of a multiple coronal flux rope system with the use of a 2.5-D time-dependent MHD model. A force-free field that contains three separate coronal flux ropes is taken to be the initial state. Starting from this state, we increase either the annular or the axial flux of a certain flux rope to examine the catastrophic behavior of the system in two regimes, the ideal MHD regime and the resistive MHD regime. It is found that a catastrophe occurs if the flux exceeds a certain critical value, or the magnetic energy of the system exceeds a certain threshold: the rope of interest breaks away from the base and escapes to infinity, leaving a current sheet below. Moreover, the destiny of the remainder flux ropes relies on whether reconnection takes place across the current sheet. In the ideal MHD regime, i.e., in the absence of reconnection, these ropes remain to be attached to the base in equilibrium, whereas in the resistive MHD regime they abruptly erupt upward during reconnection and escape to infinity. Reconnection causes the field lines to close back to the base and thus changes the background field outside the attached flux ropes in such a way that the constraint on these ropes is substantially relaxed and the corresponding catastrophic energy threshold is reduced accordingly, leading to a catastrophic eruption of these ropes. Since magnetic reconnection is generally inevitable when a current sheet forms and develops through an eruption of one flux rope, the eruption of this flux rope must lead to an eruption of the others. This provides an example to demonstrate the interaction between several independent magnetic flux systems in different regions, as implied by the Bastille Day event, and may serve as a possible mechanism for sympathetic events occurring on the Sun.  相似文献   

16.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

17.
Every two-ribbon flare observed during the Skylab period produced an observable coronal transient, provided the flare occurred close enough to the limb. The model presented here treats these two events as a combined process. Transients that occur without flares are believed to involve magnetic fields that are too weak to produce significant chromospheric emission. Adopting the hypothesis that the rising flare loop systems observed during two-ribbon flares are exhibiting magnetic reconnection, a model of a coronal transient is proposed which incorporates this reconnection process as the driving force. When two oppositely directed field lines reconnect a lower loop is created rooted to the solar surface (the flare loop) and an upper disconnected loop is produced which is free to rise. The magnetic flux of these upper loops is proposed as the driver for the transient. The force is produced by the increase in magnetic pressure under the filament and transient.A quantitative model is developed which treats the transient configuration in terms of four distinct parts- the transient itself with its magnetic field and material, the region just below the transient but above the filament, the filament with its magnetic field, and the reconnected flux beneath the filament. Two cases are considered - one in which all the prominence material rises with the transient and one in which the material is allowed to fall out of the transient. The rate of rise of the neutral line during the reconnection process is taken from the observations of the rising X-ray flare loop system during the 29 July, 1973 flare. The MHD equations for the system are reduced to four non-linear ordinary coupled differential equations which are solved using parameters believed to be realistic for solar conditions. The calculated velocity profiles, widths, etc., agree quite well with the observed properties of coronal transients as seen in white light. Since major flares are usually associated with a filament eruption about 10–15 min before the flare and since this model associates the transient with the filament eruption, we suspect that the transient is actually initiated some time before the actual flare itself.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-like’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed <10 km s-1. This event corresponds to the leading edge of a ‘streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004981125702  相似文献   

19.
He i 10830 Å images show that early in sunspot cycles 21 and 22, large bipolar magnetic regions strongly affected the boundaries of the nearby polar coronal holes. East of each eruption, the hole boundary immediately contracted poleward, leaving a band of enhanced helium network. West of the eruption, the boundary remained diffuse and gradually expanded equatorward into the leading, like-polarity part of the bipolar magnetic region. Comparisons between these observations and simulations based on a current-free coronal model suggest that:
  1. The Sun's polar magnetic fields are confined to relatively small caps of high average field strength, apparently by a poleward meridional flow.
  2. The enhanced helium network at high latitude marks the location of relatively strong polar fields that have become linked to the newly erupted bipolar region in that hemisphere.
  3. The distortion of the polar-hole boundary is accompanied by a corresponding distortion of the equatorial neutral sheet in the outer corona, in which the amount of warping depends on the magnitude of the erupted flux relative to the strength of the Sun's polar magnetic fields.
  相似文献   

20.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号