首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Oceanologica Acta》1998,21(6):923-935
As part of the Programme National d'Océanographie Côtière, the nutrient dynamics of the Bay of Seine were studied between 1992 and 1994 in order to complement work on ecological modelling. Firstly, the River Seine's nutrient fluxes were established: 80 000–130 000 t a−1 of dissolved inorganic nitrogen, 6 400–8 4001 a−1 of dissolved phosphorus and 20 000–77 000 t a−1 of dissolved silicium. Estuarine processes were taken into account. Consequences of nutrient loading for the bay were then evaluated at the pelagic level (nutrient and chlorophyll enrichments) and the benthic level (distribution of various phosphorus fractions in superficial sediments). The large continental inputs always induce concentration gradients in the water from the mouth of the river to the northwest of the bay. The northward spreading of fine particulate matter controls the distribution of adsorbed phosphate and iron-aluminium bound phosphate in sediments. In contrast, calcium bound phosphate, the main fraction in sediments, is not affected by river inputs. Organic phosphorus in sediments is related to phytoplankton blooms, with increasing concentrations during productive periods; afterwards the fast recycling prevents sedimentary accumulation. The nutrient depletions observed beyond the turbid plume during spring 1992 enabled the calculation of nutrient uptake rates, and the comparison of these rates with phytoplankton biomass (chlorophyll a + phaeopigments). Ratios of nutrient consumption to pigment concentration were estimated at 1 μmol μg−1 for nitrogen, 0.05 for phosphorus and 0.5 for silicate. These values, as N/P and Si/N uptake ratios (respectively 17.5 and 0.4), were similar to usual values.  相似文献   

2.
We measured benthic and water column fluxes in a hypersaline coastal system (Baffin Bay, Texas) in 1996–1997, a period of decreasing salinity (increased freshwater input) and turbidity. Salinity decreased from a mean of 60 to 32 practical salinity units (psu) and turbidity decreased from a mean of 78 to 25 NTU over the study period. Associated with hydrological changes, there were important changes in nutrient fluxes and metabolism. There was a shift of total respiration from the water column to the sediments and an increased amount of the benthic metabolism (2–67%) was attributed to sulfate reduction in this system when salinity was lowest, perhaps a consequence of increased benthic light levels and photosynthetic production of labile carbon in the sediments. The sediments were a large sink for both N and P. Sediment particulate C:N (9.8) and C:P (119) ratios were lower than those in the water column. However, ammonium:phosphate fluxes increased coincident with increased sulfate reduction rates and porewater sulfide concentrations. Efficient N-retention mediated through dissimilative nitrate reduction to ammonium, and high rates of N-fixation in shallow, hypersaline systems may facilitate transitions from N-limitation to P-limitation. During the most hypersaline period, seston exhibited some of the most extreme nutrient ratios ever reported for a marine ecosystem (C:N 10–37 and C:P 200–1200) and suggest that plankton are likely to be P-limited or are very well adapted to low P availability. When salinity and N:P and C:P ratios were highest, the plankton was dominated by a brown tide alga (Aureoumbra lagunensis), supporting evidence that this organism is adapted to low P, long residence time systems.  相似文献   

3.
《Oceanologica Acta》1998,21(2):319-324
An assessment was made of the distribution of the faecal sterol coprostanol (COP) in sediments in the Bilbao estuary. Concentrations of COP ranged from 135.15 to 10.77 μg g−1 dry weight, from the inner to the open estuary, with a mean value of 51.43 μg g−1; the highest concentrations were found near the mouths of several tribularies flowing into the estuary. Comparisons with other published values indicate that sediments from the Bilbao estuary are affected by sewage pollution in a similar degree to that reported for other estuaries in the world. Organic enrichment and anaerobic sediment conditions prevail in three-fourths of its watercourse bed. Since the spatial distribution of several organic sedimentary parameters could be clearly correlated with COP levels, we can conclude the existence of major pollution by the addition of untreated sewage, coming from mainly domestic sources. The implementation of a sewerage treatment plan by the local water authority needs the monitoring of reliable sewage tracers, such as faccal sterols, to assess the effectiveness of the plan in reducing the effects of pollution.  相似文献   

4.
Information on the response of nucleic acids (i.e., DNA and RNA) to simulated benthic disturbance was obtained from samples collected from eight sediment cores (0–10 cm) located in the Central Indian Basin (CIB). In general the total sedimentary DNA (DNA) increased with depth (from 380.09 to 408.99 μg·g?1), while total sedimentary RNA (RNA) decreased (from 878.13 to 484.16 μg·g?1). Following the simulated benthic disturbance brought about by the benthic hydraulic disturber, DNA decreased by 10% along the disturbed track while the RNA increased by around 75%. The RNA/DNA ratio decreased nearly 10%. However, the ratio doubled along the disturbed track suggesting that the activity was stimulated at molecular level following artif icial disturbance. The nucleic acid ratio thus shows that the CIB sediments are metabolically active, and with disturbance the activity tends to increase further.  相似文献   

5.
Proliferation of fast-growing ephemeral macroalgae in shallow-water embayments constitutes a large-scale environmental change of coastal marine ecosystems. Since inorganic nutrients essential for the initiation and maintenance of macroalgal growth may be supplied from the underlying sediment, we investigated the coupling between benthic inorganic nutrient (mainly N and P) fluxes and sediment properties in 6 bays representing a wide gradient of sediment characteristics (grain size, organic matter content, solid phase C and N). The initial characterization of bays was made in June and also included measurements of oxygen flux and microphytobenthic and macrofaunal biomass. In September, still within the growth season of the macroalgae, complementary experiments with sediment-water incubations for benthic flux measurements of oxygen and nutrients focused on trophic status (balance between auto- and heterotrophy) as a controlling factor for rates of measured benthic nutrient fluxes. Generally, sediments rendered autotrophic by microphytobenthic photosynthesis removed nutrients from the overlying water, while heterotrophic sediments supplied nutrients to the overlying bottom water. Estimations of the green-algal nutrient demand suggested that late in the growth season, net heterotrophic sediments could cover 20% of the N-demand and 70% of the P demand. As the benthic trophic status is a functional variable more closely coupled to nutrient fluxes than the comparably conservative structural parameter organic matter content, we suggest that the trophic status is a more viable parameter to classify sediments and predict benthic nutrient fluxes in shallow-water environments.  相似文献   

6.
Concentrations of mercury were determined for the waters, suspended matter and sediments of the Tagus and of major French estuaries.The Tagus estuary is one of the most contaminated by mercury derived from the outfalls of a chloralkali plant and from other industrial sources. In deposited sediments the median level, 1·0 μg Hg g?1, is twenty times higher than the natural background and Hg contents depend on the sediment grain-size, age and the distance from waste-outfalls. Suspended matter is more regularly and highly contaminated (median value: 4·5 μg Hg g?1). In the French estuaries Hg levels in the suspended material decrease with salinity due to dilution and/or remobilization processes. In June 1982, in the Loire estuary, high values of Hg are observed in the middle estuary and attributed to urban and industrial sources.In the Tagus estuary, the general distribution of total dissolved Hg confirms the contamination: it increases seaward from 10 ng 1?1 in the river to 80 ng 1?1 in the estuary outlet. The dissolved Hg is almost totally organic in the river, inorganic in the middle estuary due to inorganic Hg effluents and again organic in the lower estuary. This variation is related to the dissolved organic carbon values. The dissolved Hg levels in the Loire Estuary (5–300 ng 1?1) are much higher than in the Gironde estuary (3–6 ng 1?1) and of the same order as those observed in the Tagus estuary.  相似文献   

7.
This study describes the temporal variation of microphytobenthic biomass and its controlling factors, as well as the impact of microphytobenthic activities on coastal shallow sediment in the eastern Seto Inland Sea, Japan. The chlorophyll a (Chl a), phaeopigments and sedimentary biophilic element (C, N, P and Si) contents in surface sediments, as well as nutrient concentrations at the sediment-water interface (overlying water and pore water) were observed monthly during November 2003 to May 2005 at one site in Shido Bay (water depth ca. 7 m) and at one site in Harima-Nada (35 m). No correlation was observed between the sedimentary biophilic elements and other parameters. The maximum chlorophyll a content of 48.2 μg g–1 was found in surface sediments under the photon flux reaching the seafloor of 537 μmol photon m–2 s–1 during the winter period when water transparency was the highest at station S (Shido Bay). Our results suggest that higher chlorophyll a content in surface sediment was due to the fresh microphytobenthic biomass (mainly benthic diatom). We also found a significant negative correlation between Chl a and inorganic nutrients in pore water during the low temperature period, especially silicic acid. This result suggests that the silicic acid was assimilated largely during the increase of microphytobenthic biomass in surface sediment. This study suggests that the microphytobenthic roles may have a great effect on nutrient budgets during the large supply of irradiance (winter periods) for their photosynthetic growth in shallow coastal waters.  相似文献   

8.
《Journal of Sea Research》2003,49(3):157-170
The distribution of nutrients and carbon in the different pools present in the three functional layers (the upper, biogenic layer, the thermocline layer, and the deeper, biolythic layer) of the stratified NW Mediterranean Sea was examined. The stoichiometry between dissolved inorganic nutrients, which had low concentrations in the surface waters, indicated a deficiency in nitrogen, relative to phosphorus, and an excess nitrogen relative to phosphorus within the thermocline, as well as a general silicate deficiency relative to both N and P, even extending to the biolythic layer. The dissolved organic matter was highly depleted in N and, particularly, in P relative to C, with average DOC/DON ratios >60 and DOC/DOP ratios >1500 in all three layers. The particulate pool was also depleted in N and P relative to C, particularly in the biolythic layer. The concentration of biogenic silica was low relative to C, N and P, indicating that diatoms were unlikely to contribute a significant fraction of the seston biomass. Most (>80%) of the organic carbon was present as dissolved organic carbon. Total organic N and P comprised 50–80% of the N and P pool in the biogenic layer, and decreased with depth to represent 10–25% of these nutrient pools in the biolythic layer. The high total N:P ratios in all three depth layers (N/P ratio >20) indicated an overall phosphorus deficiency in the system. The high P depletion of the dissolved organic matter must derive from a very rapid recycling of the P-rich molecules within DOM, and the increasing C/N ratio of DOM with depth indicates that N is also recycled faster than C in the DOM. Because of the uniform depth distribution of the total dissolved nitrogen concentration, the increase in the percent inorganic N and the decline in the percent dissolved organic N with depth indicates that there must be biological transformations between these pools, with a dominance of DON production in surface waters and remineralisation in the underlying layers, from which dissolved inorganic nitrogen is supplied back to the biogenic layer. Downward fluxes of DON and DOC were estimated at 200–250 μmol N m−2 d−1 and 1.4–2.1 mmol C m−2 d−1, respectively, while there should be little or no export of P as dissolved organic matter. The downward DON flux exceeded the diffusive DIN supply of about 145 μmol N m−2 d−1 to the biogenic layer, suggesting that allochthonous N inputs must be important in the region.  相似文献   

9.
Five stations along a transect from the western shore of Biscayne Bay, Florida to the Florida Current were sampled monthly for one year. The variability and amount of seston particulate organic carbon, adenosine triphosphate, chlorophyll a, primary production and zooplankton decreased along the seaward transect. The greater inshore biomass and variability of seston were the result of the allochthonous input of detritus and inorganic nutrients via terrestrial runoff. Annual primary production in this subtropical coastal lagoon ranged from 13 to 46 g C m?2 yr?1. Chlorophyll a in the bay ranged from 1 to 3 mg chlorophyll a m?2. In contrast, chlorophyll a in the surface centimetre of the sediment ranged from 50 to 300 mg chlorophyll a m?2. In this clear, shallow (2 to 3 m), oligotrophic lagoon, over 90% of total primary production is by submerged macrophytes and benthic algae. The high zooplankton biomass in the bay is most likely sustained by macrophyte detritus and the resuspension of benthic diatoms by the high winds associated with summer squalls and winter cold fronts.  相似文献   

10.
The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH?+ and PO?3? accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process.  相似文献   

11.
为了解胶州湾水体和表层沉积物营养环境状况及其主要影响因素,于2019年8月在胶州湾30个站位点采集了海水和表层沉积物样品,并于2021年5月在胶州湾沿岸采集了18个站位点的水样,对水体溶解无机态营养盐浓度和组成以及表层沉积物中总有机碳、总氮、总磷及生物硅含量和碳、氮稳定同位素(δ13C、δ15N)进行了分析。结果表明,胶州湾内水体和沿岸水体中溶解无机氮、溶解无机磷和溶解硅酸盐浓度空间分布相近,高值均位于湾东北部,主要受到河流输入和沿岸污水排放的影响,低值主要出现在湾中部和湾口处。结合近30年来的历史数据分析发现,胶州湾夏季营养盐浓度在1990-2008年期间呈持续上升的趋势,政府实施的污染物总量控制措施以及河流径流量下降使得2006年以来营养盐浓度呈现下降的趋势,该变化在空间上主要体现为大沽河氮、磷输入量的减少及其对应的湾西部营养盐高值的消失。胶州湾氮、磷营养盐输入的不平衡使得“磷限制”在2000年后逐渐加剧。胶州湾表层沉积物中总有机碳、总氮、总磷含量高值均集中于东北部和东部沿岸,结合生物硅和水体营养盐含量分析显示,这主要是河流与排污输入及其...  相似文献   

12.
The Bay of Concepcion (36°40′S; 73°02′W) is a semi-enclosed and shallow embayment in which biogeochemical processes are seasonally coupled to coastal upwelling during the austral spring and summer. The nutrient cycle in the bay is complex due to the combined effects of a pronounced O2 minimum layer and high nutrient concentrations both originating from subsurface equatorial water during coastal upwelling and a rapid rate of sediment nutrient recycling. The sediments are characterized by a high content of organic matter mainly due to the extremely high rates of phytoplankton production and deposition. During the upwelling period, a black flocculent layer frequently covers the sediment–water interface in the inner part of the bay where an extensive mat of Beggiatoa spp. develops. Three approaches are used to analyse the extent to which the benthic system recycles or retains nutrients at two stations, located at the centre (station C, St. C) and mouth (station B, St. B) of the bay for a 1-year period (March 1996–1997): (1) estimation of C and N remineralization rates based on SO42− reduction measurements, (2) calculation of C and N turnover rates using a diagenetic model applied to total organic carbon and total nitrogen vertical distributions and, (3) construction of C and N budgets from direct measurements of sedimentation (from a sediment trap) and estimates of the C and N burial rates. Depth-integrated SO42− reduction rates varied between 3.4 (winter) and 25.5 (summer) mmol m−2 d−1. Estimated C and N oxidation rates ranged between 7.9 and 87.8 mol C m−2 yr−1 and between 0.9 and 6.9 mol N m−2 yr−1, respectively. Each approach yielded minor differences in the C and N remineralization rates (and also minor differences between both studied stations), except when the kinetic model was applied to C and N distribution without including the presence of the flocculent layer. The rates of carbon oxidation and sulphate reduction were considerably higher than in other coastal sediments with similar depositional regime. The C and N burial rates were 2.23 and 0.21 (St. C) and 1.30 and 0.09 (St. B) mol m−2 yr−1, respectively. The C/N ratio of the buried fraction was ca. 10.6 at St. C and 14.4 at St. B. Because the observed differences in burial rates could not be ascribed to distinctive depositional (both stations have similar sediment accumulation rates) and oceanographic (similar O2 concentration and hydrography) conditions, differences may be due to in part spatial heterogeneity in the supply of organic matter. The degree of preservation of organic matter as plankton detritus and nitrogen accumulating bacterial biomass associated with Beggiatoa spp. at St. C may also be involved.  相似文献   

13.
《Marine Geology》2005,216(3):127-143
This study was carried out in order to understand the early diagenetic redistribution of phosphorus and relevant mass balance in the sediments of the East Sea. In two cruises during May 1993 and October 1995, 11 box cores were collected in the southwestern part of the East Sea. Dissolved phosphorus and iron were analyzed in the porewater from the cores. Sediment samples were analyzed for solid-phase P species and solid-phase Fe oxyhydroxide by sequential extraction.Phosphorus speciation results show that organic P is the major chemical form of phosphorus in young sediments within the upper 50 cm of sediment. However, the authigenic fraction of total P increases with depth, indicating the precipitation of carbonate fluorapatite (CFA) in the sediments. The authigenic CFA (Ca5(PO4)2.6(CO3)0.4F) was formed and buried at rates of 11–110 μmol cm−2 kyr−1. The main source of dissolved phosphorus for the precipitation of CFA is organic P. Dissolved phosphorus, released from the decomposition of organic P, diffuses upward to return to bottom water, or is sorbed to iron oxides in the oxidized sediments. As sedimentation proceeds, the iron oxide-bound P is released in the reduced layer and enters the dissolved phase, which contributes P to the formation of CFA in addition to that contributed by the organic P.The burial flux of reactive P (iron oxide-bound P+authigenic P+organic P) is 0.09–0.53 g P m−2 yr−1 that accounts for 18–58% of the reactive P arriving at the sediment/water interface. The burial flux of reactive P is high in the upper and lower continental margin sediment. The burial flux of reactive P in the Ulleung Basin sediment is less than those in the continental margin sites by a factor of 6, indicating that the reactive P burial flux is mainly dependent on sedimentation rate.  相似文献   

14.
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged  1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget.  相似文献   

15.
Benthic fluxes of O2, titration alkalinity (TA), total inorganic carbon (TIC), Ca2+, NO3, NH4+, PO43−, and Si(OH)4 were measured by in situ benthic flux chamber incubations at 13 locations on the North Carolina continental slope. The majority of measurements were made at water depths of approximately 700–850 m, in the previously identified upper slope depocenter. This region is characterized by extremely high organic matter deposition rates and near saturation bottom water oxygen concentrations. Measured benthic fluxes of TA are reasonably correlated with O2 benthic fluxes. Because bottom waters are supersaturated with respect to calcite and aragonite at these shallow water depths, these results demonstrate the importance of metabolically driven dissolution in this region. Subtraction of the calcium carbonate dissolution contributions from the TIC benthic fluxes suggests rates of organic matter remineralization ranging from 0.97 to 3.9 mol C m−2 yr−1 at the depocenter sites, a factor of 3–10 greater than estimated for the adjacent continental rise and upper slope areas. Because biological primary production in the overlying waters does not follow this pattern, these extremely high values are most likely supported by lateral inputs of highly reactive organic matter. Mass balance calculations indicate that despite the oxygenated bottom water conditions, 68% of the organic nitrogen released during organic matter remineralization processes is ultimately denitrified. The release of PO43− from the depocenter sediments is equivalent to or larger than that predicted from the remineralization of Redfield organic matter. This implies either that PO43− is preferentially released in this setting and that the accumulating sediments must be depleted in PO43− relative to organic carbon or that another, non-organic, phase is contributing PO43− to the system. The molar ratio of the Si benthic flux and organic carbon remineralization rate ranges from 0.30 to 0.86. This is significantly greater than the ratio reported for most pelagic diatoms. Possible reasons for this high ratio include the deposition of benthic diatoms that may have a larger Si : C ratio than pelagic diatoms, the near-bottom lateral input of partially reworked organic matter that may have an elevated Si : C ratio relative to fresh diatoms, preferential loss of carbon in sinking particulates or the release of Si from non-opaline materials.  相似文献   

16.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m−2 yr−1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.  相似文献   

17.
Laboratory experiments on the New Zealand freshwater mussel Echyridella menziesii were used to investigate the short-term effects (7–8 days) of food type on rates of biodeposition and benthic substrate respiration. Post-feeding biodeposition rates ranged from 0.34 to 1.52?mg?g?1?h?1 (mean?=?0.50?mg g?1?h?1) and were unaffected by the addition of toxin-producing Microcystis. Addition of suspended sediment (30?mg?L?1) visibly altered substrate composition, and increased total and inorganic biodeposit production rates by 24–33% compared to mussels fed commercial phytoplankton stock. Biodeposition rates of mussels in lake bed substrates were 38% higher than those in silica sand for identical feeding regimes, suggesting that a significant proportion of material produced in this experiment could have been derived from feeding on organic matter in the lake bed sediments. Respiration rates were higher in treatments with Microcystis but were unaffected by the presence of mussels. This laboratory study suggests that biodeposition by E. menziesii is resilient to short-term exposure to Microcystis, and highlights the ability of mussels to alter benthic substrate composition by incorporating suspended sediment into substrates.  相似文献   

18.
The geochemistry of dissolved copper-organic complexes was investigated in the estuarine waters of Narragansett Bay. A transect survey was conducted in August 1980, while one mid-bay station was monitored from March through August of that year. The transect data indicated that most of the copper-organic complexes enter the bay via sewage effluent which is discharged into the Providence River at the head of the bay. Organic copper concentrations in the estuary ranged from 0.12 to 2.30 μg kg?1 and comprised from 14 to 70% of the total dissolved copper. The concentration of copper-organic complexes was not directly related to the amount of dissolved organic matter; and recently generated organic material from phytoplankton production within the bay had a negligible influence on the fraction of dissolved copper which was organically bound.The major source of total copper to the bay is anthropogenic inputs from sewage effluents. Particulate and dissolved copper concentrations ranged from 0.06 to 2.42 and 0.23 to 16.4 μg kg?1, respectively, giving average values of about 40% particulate and 60% dissolved copper. Particulate copper concentrations decreased rapidly from the upper to the lower bay as a result of both removal and dilution. About 75% of the dissolved copper entering the bay is rapidly removed in the Providence River and upper bay, and the remaining portion (which is largely organic copper) follows conservative mixing in the mid to lower bay. The data suggest that copper binding by dissolved organic matter may be an important control on the riverine flux of dissolved copper through estuaries into coastal and oceanic waters.  相似文献   

19.
According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment–water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance.It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (Ptot) is preserved preferentially over organic C (Corg). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of Ptot and organic P (Porg) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.  相似文献   

20.
This study (2002/2004) examines the effect of artificial reef (AR) structures off the southern coast of Portugal on biogeochemical process and nutrient cycling. Organic and inorganic carbon, nitrogen, phosphorus and chlorophyll a were determined monthly in sediment cores and settled particles for a two-year period. Ammonium, nitrates, phosphates, silicates, total organic nitrogen and phosphorus, chlorophyll a and phaeopigments were also determined monthly in water samples within AR and control sites. Results of the two-year study showed that: (i) there was a significant exponential fit between organic carbon and chlorophyll a (r2=0.91; p<0.01) in reef sediment suggesting an increase of benthic productivity; (ii) organic carbon and nitrogen content in settled particles within AR environment was about four times higher two years after reef deployment; (iii) nutrients and chlorophyll a in the water column were higher at AR than control site. Two years after AR deployment, dissolved organic and inorganic compounds in near bottom water were 30-60% higher, emphasizing benthic remineralization processes at AR's organically rich sediment. Marked chemical changes in the ecosystem were observed during the two-year study period, reinforcing the importance of these structures for sandy coastal areas rehabilitation through trophic chain pull-out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号