首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shells of the rocky shore intertidal gastropod Osilinus turbinatus (von Born), often abundant in archaeological deposits in the Mediterranean region, are a potential source of data on palaeotemperature, palaeoseasonality and archaeological seasonality. To evaluate this species as a climate archive, investigations of annual patterns of shell growth and of monthly variations in oxygen isotopes in shell carbonates were made on different populations in NW Sicily. Mark-recapture experiments at San Vito lo Capo and Mazzaforno show that O. turbinatus grows almost continuously throughout the year but at different rates in different seasons. Around 75% of the yearly shell growth occurs in the autumn and winter. On average, larger/older shells produce narrower annual growth increments than smaller/younger ones. Conspicuous growth lines in larger/older shells show that growth stops during the hottest part of the summer. Oxygen isotope analyses on monthly collected shells of O. turbinatus from three shores (Cala Grande, Monte Cofano and Mazzaforno) show that the isotope values record temperature variations through the year. In all the datasets, surface seawater temperatures (SSTs) calculated from δ18OSHELL mostly underestimate measured SSTs, offsets being generally greater in summer. Minimum annual offsets range from 0.0°C to 0.7°C and maximum annual offsets from 3.1°C to 8.7°C. δ18OSHELL values fail to record temperatures higher than 25°C. Careful selection of shells to be analysed can reduce offsets between δ18OSHELL temperature estimates and measured SSTs for many parts of the year, except the hottest. Allowing for this, shells of O. turbinatus offer good potential as climate archives and for archaeological studies of seasonal patterns of human foraging for shellfish.  相似文献   

2.
Feng H. Lu 《Geo-Marine Letters》2008,28(5-6):339-349
Low-Mg calcite shells have been widely used to reconstruct the chemistry of ancient seawater. There is always a question: are the shells chemically pristine? This paper presents the isotope and elemental geochemistry of low-Mg calcite bivalve shells in late Miocene platform carbonates, SE Spain. The platform carbonates were extensively dolomitized, and limestone is restricted to older stratal units, and to units mainly in topographically higher and more landward strata. Low-Mg calcite oyster shells were completely dissolved out in the basinward dolomite, but are well preserved in the limestone. These shells appear to retain the original growth microstructures, based on hand samples. Under the microscope, however, dissolution and recrystallization, as well as pristine growth lines are all present. Sr isotopes in these shells range from that of normal Miocene seawater to radiogenic values. δ18O and δ13C values, and Mg, Sr, and Na concentrations in these shells are rather variable. The high end members are consistent with the typical values of modern/late Miocene normal-seawater low-Mg calcite shells, whereas the low end members are close to those of diagenetic calcite cements, which have low δ18O, δ13C, Sr and Na values, and radiogenic Sr. The Nijar shells were altered physically and chemically to different degrees by diagenesis, although these shells are consistent with some “criteria” of unalteration. The isotopic and trace-element data collected in altered and pristine (or less altered) portions coexisting in the same shells are clearly differentiable. Quantitative simulation of covariations of geochemical pairs indicates that solid mixing of unaltered and altered portions by sampling is consistent with the variations in isotopic and elemental data recorded in the Nijar shells. The geological significance of this study is that ancient fabric-retentive calcite shells may have been altered geochemically although they may appear pristine. Calcite shells that underwent intensive diagenesis should be examined rigorously under the microscope, coupled with investigations of multiple geochemical proxies to assess chemical alteration. Only the data of unaltered shells can be used to reconstruct the chemistry of ancient seawater.  相似文献   

3.
Growth lines and variation in oxygen and carbon isotope ratios (δ18O and δ13C) in shells of the Pliocene scallop Chesapecten madisonius preserve seasonal chronologies of biological and environmental change. This study evaluated whether (1) prominent growth lines were formed annually, and (2) growth rates estimated using isotope sclerochronology were comparable to rates estimated using visual inspection (measuring the width between external growth lines). We compared both techniques for estimating growth rates and age on three late to mid-Pliocene C. madisonius shells. The first approach located prominent growth lines on the δ18O time series, and differentiated between annual and non-annual (disturbance) growth lines. The second approach assumed all prominent lines were annual. This comparison showed that visual inspection underestimated growth rates and overestimated age. Seasonal timing of annual growth line formation using isotope sclerochronology provided unexpected results. Because this region fell within the warm-temperate paleobiogeographic province, we predicted annual lines formed during summers (most negative δ18O values). Instead, annual growth lines coincided with the most positive δ18O values (winter), typical of bivalves from cold-temperate regions. Moreover, shells recorded seasonal temperatures ranging from 3.2–20.8°C, a range lower than the thermal regime defined for warm-temperate environments (8–25°C). Possibly, the Sea Slope Gyre, which mixed eddies and cold filaments of the Labrador Current and warm waters of the Gulf Stream, penetrated the warm-temperate environment in this region. Alternatively, warm-water fauna from the zoogeographic Carolinian subprovince migrated northward and endured by virtue of warm summer temperatures. Regardless of the explanation, our findings provide a glimpse of mid-latitude seasonal temperature range for a warm climate episode during the mid-Pliocene.  相似文献   

4.
Coastal marine environments are important links between the continents and the open ocean. The coast off Mangalore forms part of the upwelling zone along the southeastern Arabian Sea. The temperature, salinity, density, dissolved oxygen and stable oxygen isotope ratio (δ18O) of surface waters as well as those of bottom waters off coastal Mangalore were studied every month from October 2010 to May 2011. The coastal waters were stratified in October and November due to precipitation and runoff. The region was characterised by upwelled bottom waters in October, whereas the region exhibited a temperature inversion in November. The surface and bottom waters presented almost uniform properties from December until April. The coastal waters were observed to be most dense in January and May. Comparatively cold and poorly oxygenated bottom waters during the May sampling indicated the onset of upwelling along the region. δ18O of the coastal waters successfully documented the observed variations in the hydrographical characteristics of the Mangalore coast during the monthly sampling period. We also noted that the monthly variability in the properties of the coastal waters of Mangalore was related to the hydrographical characteristics of the adjacent open ocean inferred from satellite-derived surface winds, sea surface height anomaly data and sea surface temperatures.  相似文献   

5.
The isotope characteristics (δD, δ18О) of Kara Sea water were studied for quantitative estimation of freshwater runoff at stations located along transect from Yamal Peninsula to Blagopoluchiya Bay (Novaya Zemlya). Freshwater samples were studied for glaciers (Rose, Serp i Molot) and for Yenisei and Ob estuaries. As a whole, δD and δ18O are higher in glaciers than in river waters. isotope composition of estuarial water from Ob River is δD =–131.4 and δ18O =–17.6‰. Estuarial waters of Yenisei River are characterized by compositions close to those of Ob River (–134.4 and–17.7‰), as well as by isotopically “heavier” compositions (–120.7 and–15.8‰). Waters from studied section of Kara Sea can be product of mixing of freshwater (δD =–119.4, δ18O =–15.5) and seawater (S = 34.9, δD = +1.56, δ18O = +0.25) with a composition close to that of Barents Sea water. isotope parameters of water vary significantly with salinity in surface layer, and Kara Sea waters are desalinated along entire studied transect due to river runoff. concentration of freshwater is 5–10% in main part of water column, and <5% at a depth of >100 m. maximum contribution of freshwater (>65%) was recorded in surface layer of central part of sea.  相似文献   

6.
We report on a 41-year (winter 1970 to winter 2010) Porites lutea coral core climate record from Two-Mile Reef, Sodwana Bay, in the South-Western Indian Ocean. X-ray analysis, ultraviolet fluorescent photography and stable isotope (δ18O and δ13C) analysis revealed skeletal high-density, late-winter and low-density, late-summer bands with very little terrestrial humic input. An overall decrease in coral growth rate was seen over this period, possibly linked to global temperature and acidification trends. The stable isotopes δ18O and δ13C were predominantly out of phase, with calculated temperatures showing a slight increase over the 41-year period but with an overall decrease from 1994 to 2010. The insignificant ocean warming recorded in the coral supports the existence of a local, self-regulating, cold-water upwelling system from the adjacent shelf break and canyons that is potentially moderating coastal water temperature rise in Sodwana Bay.  相似文献   

7.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   

8.
Commensal barnacles, Chelonibia testudinaria, from logger-head turtles have 18O and 13C variations in their calcitic shells that record the environments in which the turtles live. Isotopic profiles from the barnacle shells can thus be interpreted to reconstruct movements of the host turtle between open ocean and brackish-water regimes.  相似文献   

9.
Along a north-south transect (9.69°N to 55.01°S) in the southwestern Indian Ocean during the Indian Pilot Expedition to Southern Ocean (PESO), the oxygen isotopic analysis of planktic foraminifera (Globigerina bulloides) from 23 surface sediment samples was carried out to assess the relationship between isotopic composition of G. bulloides and the prevailing physical (seawater temperature and salinity) conditions of the ambient seawater. An increasing trend in the δ18O value is noticed towards higher latitude. Apparently such an increase in δ18O values is inversely related to the temperature changes along the transect. However, slight mismatch is observed at a few stations due to calcification out of optimum conditions or due to the salinity changes. The preliminary results of the present study, if extended to the subsurface sediments coupled with other parameters, may contribute to the reconstruction of the paleohydrography of the region, especially the position of various seawater fronts during the geologic past albeit with areal limitation.  相似文献   

10.
Mollusks are well known for their detailed recording of paleoenvironmental and paleoclimatic changes in their carbonate shells. In this study, we constructed 18-year blue color intensity and oxygen isotope profiles of a 14 C dated(AD 990±40) fossil giant clam, Tridacna gigas, from Shidao Island, South China Sea. The δ18O profile of the T. gigas specimen displayed regular annual cycles and was probably controlled by seasonal variations of the climatic parameters. The blue color intensity profile showed good agreement with the δ18O series, and both had 18 clear annual cycles in accordance with the 18 visually identified annual growth bands. The annual shell growth rate determined from the blue color intensity and oxygen isotope profiles indicated that the annual shell increment of the Tridacna specimen was stable after the onset of sexual maturity. Spectral analysis of the δ18O and blue color intensity time series suggested that the El Nio–Southern Oscillation(ENSO) period observed in the instrumental temperature and precipitation records of the South China Sea during the past 50 years also existed in medieval times. Our results showed that fossil giant clams could provide a good archive of historical intra-seasonal to decadal climate variations.  相似文献   

11.
A very high-resolution carbon and oxygen stable isotope analysis (bulk-carbonate) of a biostratigraphically well-constrained Callovian–Oxfordian series is provided here for the first time. The homogeneity of the clayey series and the weak diagenetic alteration allow the isotopic signal variations to be considered as primary in origin. A prominent and brief negative excursion in the δ13C curve (−2‰), occurring at the start of the Middle Callovian (Jason Zone – Obductum Subzone) and correlated regionally, suggests a possible methane release. The increasing δ13C values thereafter up to the Early Oxfordian, concomitant with a warming episode, highlight the burial of carbon in organic-rich layers which, in return, may have triggered a decrease in atmospheric pCO2. At higher frequencies, observed fluctuations of the δ13C and δ18O values are orbitally driven (405-kyr and 100-kyr eccentricity cycles) and may correspond to the salinity and temperature variability recorded in sea water. The δ18O isotopic measurements from well-preserved diagenetically screened belemnites and bivalves along the series, compared to available data from Tethyan domains, agree with the scenario of a global cooling at the Middle-Late Jurassic transition. The well-dated δ18O isotopic curve suggests that the onset of this cooling event occurred at the end of the Coronatum Zone (Middle Callovian).  相似文献   

12.
Mussels, Mytilus edulis L., were exposed to elevated concentrations of copper or cadmium in the laboratory, then placed in cages in the sea (salinity 7‰). One year later maximum lengths of the mussels were measured and shells screened for deformities. Growth was 0·6 cm year?1 in the control cages and retarded in cages of exposed mussels. A total of 63% of cadmium-exposed and 46% of copper-exposed mussels had shell deformities. In the control cages 26% were deformed while in a natural population only 3% were deformed. The proportion of deformities to growth was inversely related. Low concentrations showed their injuriousness in this long-term test, probably due to the closing of the valves during exposure to high concentrations.  相似文献   

13.
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (δ18Oshell) of five planktic foraminiferal species. Both the δ18Oshell and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average δ18Oshell of G. ruber (w) from surface sediments is similar to the δ18Oshell values measured from the sediment-trap samples during winter. However, the δ18Oshell of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in δ18Oshell values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their δ18Oshell.  相似文献   

14.
The climate of the South China Sea is dominated by the East Asian monsoon (EAM) system. Existing paleoclimate reconstructions offered an excellent insight into longer-term EAM variations. However, due to a lack of appropriate high-resolution paleoclimate data, relatively little is known about the frequency and strength of EAM extremes during the Holocene. To evaluate and establish a potential proxy archive for past variations of the EAM on shorter time-scales, we have carried out a calibration study on shells of the bivalve mollusk, Paphia undulata (Born 1778) from Daya Bay, China. This species has a short lifespan (3 years). Shells grow uninterruptedly between February/March and mid-November and are formed near oxygen isotopic (δ18O) equilibrium with the ambient environment. Shell growth patterns, δ18Oshell and δ13Cshell values, can be used to estimate the relative amount of precipitation and terrestrial runoff. Therefore, shells of this species can provide reliable, sub-seasonally resolved data on past East Asian summer monsoon strengths. The feasibility of this method has been tested with two Holocene shells from sediment cores taken from the nearby Beibu Gulf. A rather peculiar finding is that shell growth of P. undulata seems to be largely uncoupled to measured local environmental variables. Growth rates are negatively correlated to seawater temperature and chlorophyll a levels and positively to salinity. It is hypothesized here that extraordinary fast shell growth in early spring (February/March; low temperature and primary productivity) are facilitated by preserved energy resources, ensuring that the bivalve quickly reaches the predation window and the required size for reproduction.  相似文献   

15.
We compare the output of an 18-box geochemical model of the ocean with measurements to investigate the controls on both the mean values and variation of nitrate δ15N and δ18O in the ocean interior. The δ18O of nitrate is our focus because it has been explored less in previous work. Denitrification raises the δ15N and δ18O of mean ocean nitrate by equal amounts above their input values for N2 fixation (for δ15N) and nitrification (for δ18O), generating parallel gradients in the δ15N and δ18O of deep ocean nitrate. Partial nitrate assimilation in the photic zone also causes equivalent increases in the δ15N and δ18O of the residual nitrate that can be transported into the interior. However, the regeneration and nitrification of sinking N can be said to decouple the N and O isotopes of deep ocean nitrate, especially when the sinking N is produced in a low latitude region, where nitrate consumption is effectively complete. The δ15N of the regenerated nitrate is equivalent to that originally consumed, whereas the regeneration replaces nitrate previously elevated in δ18O due to denitrification or nitrate assimilation with nitrate having the δ18O of nitrification. This lowers the δ18O of mean ocean nitrate and weakens nitrate δ18O gradients in the interior relative to those in δ15N. This decoupling is characterized and quantified in the box model, and agreement with data shows its clear importance in the real ocean. At the same time, the model appears to generate overly strong gradients in both δ18O and δ15N within the ocean interior and a mean ocean nitrate δ18O that is higher than measured. This may be due to, in the model, too strong an impact of partial nitrate assimilation in the Southern Ocean on the δ15N and δ18O of preformed nitrate and/or too little cycling of intermediate-depth nitrate through the low latitude photic zone.  相似文献   

16.
Live-collected shells of the oyster, Crassostrea virginica, contain geochemical records of modern temperature and salinity, so records of prehistoric conditions may be obtained from subfossil shells. Restoration of channelized watersheds in Florida is receiving much attention, and plans for targeted watersheds require information about estuarine conditions before channelization. Lack of historical records necessitates alternative methods to understand pre-disturbance conditions. A 14C-calibrated, amino-acid geochronology based on racemization of glutamic acid yielded ages ranging from 190–1220 AD and from 1270–1860 AD for subfossil oysters from Blackwater River (near-natural watershed) and for Faka-Union Bay (channelized watershed), respectively. δ18O and δ13C values of subfossil shells from Blackwater River indicate salinity and summer temperatures similar to present. Winter temperatures recorded in shells from 190, 590, 720, and 1050 AD appear 1–5 °C colder than present winter temperatures, whereas the shell from 1220 AD records winter temperatures similar to modern winter temperatures. These temperature shifts may indicate change in climate or natural seasonal variation of winter temperature from year to year. Subfossils from Faka-Union Bay may reflect a complicated hydrology, which cannot be evaluated by isotopic compositions alone and demonstrates the need for development of independent elemental proxies for temperature and salinity. Decreases in δ13C from subfossil to modern shells may in part result from CO2 added to the atmosphere from fossil fuel burning (the Suess effect). Subfossil δ13C that is >1‰ more positive than modern shells suggest a change in the dominant carbon sources from terrestrial C4 or aquatic plants to C3 plants (mangroves).  相似文献   

17.
We present high-resolution isotopic records and cathodoluminescence studies of recently dead and live bivalve specimens from cold seeps, in an attempt to reconstruct environmental conditions during organism growth, and thereby the possible variability of fluid-venting activity at the seafloor. Shells of the burrowing lucinid Myrtea aff. amorpha were collected at three localities near actively venting methane seeps in the Eastern Mediterranean deep sea, using the Nautile submersible during two French oceanographic cruises: from the Kazan mud volcano, in the vicinity of the Anaximander mounts (MEDINAUT cruise, 1998), and from the central pockmark province and the Amon mud volcano of the Nile deep-sea fan (NAUTINIL cruise, 2003). The oxygen and carbon isotope compositions of 18 shells from the various localities, and also from different sites at the same locality show a rather strong scatter (1.8 < δ 18O‰ < 3.4; −10.2 < δ 13C‰ < 2.2), and values lower than those expected for carbonate precipitated at equilibrium with present-day bottom waters. This means that warm methane-rich fluids were mixed with bottom seawater during precipitation of shell carbonates. We have tried to determine ontogenetic age of two shells by using cathodoluminescence as a sclerochronological proxy, because the direct counting of carbonate increments was not possible in these specimens. There is a relatively good correspondence between cathodoluminescence trends and oxygen isotope profiles that might support the link between manganese incorporation during growth and temperature. Eight specimens of lucinid shells were selected for high-resolution isotopic profiling. A few shells exhibit decreasing δ 18O and δ 13C values from the umbo to the actively growing ventral shell margin, which can be attributed to the commonly observed physiologically controlled deceleration of growth with increasing organism age, this metabolic effect corresponding to the increase of incorporation of respiratory CO2. A few shells exhibit high-frequency δ 18O variations with an amplitude of about 1.5‰ that might be related to temperature variations controlled by fluid-venting activity. One shell from the pockmark province of the Nile deep-sea fan records a strong, sharp δ 13C decrease of about 9‰, and extending over a 5-mm interval in the shell that can be related to a major methane release event. Another shell from the Kazan mud volcano exhibits a progressive increase of δ 13C values from −10‰ to 0‰ with age, which might indicate decreasing methane flow throughout the organism’s life. This study has demonstrated that bivalve shells from deep-sea cold seeps represent good indicators of variability in seepage activity of methane-rich fluids, at various scales in both space and time. Although the precise chronology of the observed events was not established, because shell growth rate is not known in this case, this remains a priority for future studies in such environments.  相似文献   

18.
Marine benthic trophic relationships and food web structures may be influenced by benthic–pelagic coupling processes, which could also be intensified by the physical dynamics of marine fronts. In this work, we employed stable isotope (δ13C and δ15N) analysis to investigate the influence of the Southwest (SW) Atlantic shelf-break front (SBF; 38–39°S, 55–56°W; Argentina) on an epibenthic trophic web. Epibenthic organisms were sampled, at depths of ~ 100 m, with a non-selective dredge from a sandy bottom community located in frontal (F) and marginal (M) areas. The SBF position and the chlorophyll-a (chl-a) concentrations were inferred using satellite data of the sea surface temperature (SST) and satellite chl-a concentration, respectively. The most noticeable shifts in stable isotopes between the sampled areas were those of the Patagonian scallop, Zygochlamys patagonica13C), and those of the sea urchin, Sterechinus agassizi15N). Diet analyses inferred from stable isotopes and mixing models demonstrated that the dominant component of this community, Z. patagonica, had variable contributions to higher trophic levels between areas. More importantly, the epibenthic assemblage in F areas showed δ13C-enriched and δ15N-depleted isotopic signatures with respect to the M areas. Collectively, this evidence suggests that frontal dynamics promotes the accumulation of δ13C-enriched phytoplankton in the seabed in F areas, while in M areas the more degraded organic matter becomes more important in the trophic web, decreasing the δ15N isotopic signature of the assemblage. Therefore, the trophic web was sustained by fresher food in F areas than in M areas, demonstrating the role of frontal dynamics in the shaping of these communities.  相似文献   

19.
Paola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ).Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO2-rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area.In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water.Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted 13C isotopic composition and slightly positive δ18O values. By contrast, siderite concretions, generally found within the first 6 m of sediments on the alleged mud volcanoes, yielded positive δ13C and δ18O values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13C-rich dissolved inorganic carbon (DIC) and 18O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO2.  相似文献   

20.
Authigenic carbonates from active methane seeps offshore southwest Africa   总被引:2,自引:1,他引:1  
The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2–5?m length indicates a maximum age of about 60,000–80,000?years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (–61.0?<?δ13C ‰ V-PDB?<?–40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4?<?δ18O ‰ V-PDB?<?+6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby providing enough Ca2+ ions for pore solutions to reach gypsum saturation; this is thought to be promoted by the bio-irrigation and burrowing activity of benthic fauna. The δ18O–δ13C patterns identified in the authigenic carbonates are interpreted to reflect variations in the rate of AOM during the last glacial–interglacial cycle, in turn controlled by variably strong methane fluxes through the pockmarks. These results complement the conclusions of Kasten et al. in this special issue, based on authigenic barite trends at the Hydrate Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation–decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号