首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ordovician-Silurian rocks at Garth, 30 km northeast of Llandovery, have been remapped. Within the siltstone-dominated succession, the coarser Cwm Clŷd Formation is regarded as stratigraphically equivalent to the A1 sandstone of Llandovery and has yielded a single specimen of Eostropheodonta hirnantensis from near the base in the northernmost exposures. The Formation rests with a stratigraphical break on fossiliferous Rawtheyan siltstones in the south but is underlain by later Rawtheyan and abundantly fossiliferous Hirnantian sediments (Wenallt Formation) further north where the succession appears continuous. Sedimentary and faunal evidence demonstrates the shallowing of the Ashgill sea before a transgression and deepening started in late Hirnantian times. The implications of the sequence in determining the systemic boundary are discussed.  相似文献   

2.
The Seongsan district in the Jindo–Haenam basin of southwest Korea comprises Precambrian gneissic basement, overlain and intruded by Cretaceous volcanic (98–71 Ma) and plutonic (86–68 Ma) rocks, respectively. Haenam Formation volcanic and volcaniclastic rocks are the dominant rock type exposed in the district and are the main host to high-sulphidation (82–77 Ma) and low-sulphidation (79–73 Ma) epithermal deposits. The Eunsan and Moisan low-sulphidation epithermal deposits have similar vein mineralogy, zoned hydrothermal alteration mineral assemblages, structural framework and interpreted deformation events. These similarities suggest that they formed by district-scale hydrothermal fluid flow at about 77.5 Ma. At this time, ore fluid movement along subvertical WNW-trending faults was particularly focussed in dilatant fault bends, jogs, and at intersections with N-trending splays. At Eunsan, Au–Ag ore shoots coincide with these areas of structural complexity, whereas at Moisan, narrower ore zones correspond with several parallel, poorly connected veins. A secondary control on the location of ore zones is the intersection between mineralised WNW-striking structures and rocks of the Haenam Formation. The higher permeability and porosity of these rocks, in comparison with mudstones and siltstones of the underlying Uhangri Formation, resulted in the more efficient lateral migration of ore fluids away from subvertical faults and into wall rocks. The intersection between subvertical WNW-striking faults and the gently dipping Haenam Formation imparts a low angle SW plunge to both ore bodies. WNW-striking post-mineralisation faults displace ore zones up to 100 m and complicate the along-strike exploration and mining of WNW-trending ore zones. Future exploration strategies in the district involve the systematic testing of WNW-trending mineralised structures along strike from known deposits, with a particular emphasis on identifying structurally complex areas that experienced local dilation during the mineralisation event. Poorly exposed regions have historically been under-explored. However, based on the proposed exploration model for the Eunsan and Moisan deposits, these areas of poor outcrop are now considered important target areas for hidden ore bodies using ground-based geophysical exploration tools, such as seismic surveys.  相似文献   

3.
北京西山下苇甸地区出露良好的青白口系长龙山组,笔者通过实测野外露头剖面以及岩石薄片镜下鉴定,对该组下部沉积相及层序地层进行研究,并对沉积环境演化进行分析。识别出长龙山组下部8种岩石类型有含砾砂岩、羽状交错层理砂岩、丘状交错层理砂岩、波状层理粉砂岩、脉状层理粉砂岩、透镜状层理粉砂岩、碳质泥岩以及水平层理泥岩;并识别出辫状河道、潮坪(潮道)、潮下浅水及潮下深水等沉积相类型,建立该区辫状河—滨岸潮坪沉积模式。进而通过识别长龙山组与其下伏地层之间的区域不整合面和下切谷河道充填砂砾岩底面确定层序界面。其中,初始海泛面以每个砂体之上覆盖的细粒沉积的底面为代表,最大海泛面以厚层碳质泥岩及水平层理泥岩的底面为代表。依据这些关键层序地层界面,将该区长龙山组下部划分为3个层序,每个层序内部进一步划分为低位体系域、海侵体系域以及高位体系域。综合分析表明,京西的长龙山组发育于由燕辽裂陷槽转为华北稳定克拉通的过渡期。  相似文献   

4.
陕西山阳地区上泥盆统桐峪寺组重力流沉积   总被引:1,自引:0,他引:1       下载免费PDF全文
近二十年来,对沉积物重力流及其沉积物的研究已引起国内外沉积学界的广泛重视,无论在理论研究还是在实际应用方面,均取得了不少成功的经验,著述甚多。1987年以来,笔者对秦岭造山带中的刘岭群进行了详细的观察研究,首次在上泥盆统桐峪寺组发现一套以颗流、浊流为特征的重力流沉积组合。这一发现对整个刘岭群的沉积环境与沉积相研究具有重要意义,为秦岭造山带的形成与演化及大地构造格局研究提供了有力的沉积学依据。  相似文献   

5.
鄂尔多斯盆地及周缘地区上石炭统本溪组(羊虎沟组)沉积特征对于预测其砂体展布、油气勘探具有重要意义。在野外地质考察、岩心观察和薄片研究的基础上,对本溪组(羊虎沟组)进行了岩石学特征、沉积相类型和空间展布规律等方面的研究。本溪组(羊虎沟组)岩石类型主要为灰白色中-粗砂岩和深灰色、灰黑色泥岩、粉砂质泥岩、泥质粉砂岩,夹多层煤、灰岩和泥灰岩;主要发育浅海陆棚、障壁岛、潮坪、潟湖和扇三角洲沉积。鄂尔多斯盆地中央古隆起西部主要发育扇三角洲、障壁岛和潟湖沉积相,东部主要发育扇三角洲、潟湖、障壁岛和浅海陆棚沉积相,中间过渡带主要为潮坪沉积。自北向南依次发育扇三角洲平原、扇三角洲前缘、潮坪、潟湖和浅海陆棚等沉积。总体上来讲,本溪组(羊虎沟组)为一套海陆交互相沉积建造,具有东、西分异的沉积格局。  相似文献   

6.
Detailed outcrop studies at the flanks of Al Kufrah Basin, Libya, reveal the nature of glacially-related sedimentation and post-depositional deformation styles produced in association with the Late Ordovician glaciation, during which ice sheets expanded northward over North Africa to deposit the Mamuniyat Formation. At the SE basin flank (Jabal Azbah), the Mamuniyat Formation is sand-dominated, and incises interfingering braidplain and shallow marine deposits of the Hawaz Formation. The glacially-related sediments include intercalations of mud-chip bearing tabular sandstones and intraformational conglomerates, which are interpreted as turbidite and debrite facies respectively. These record aggradation of an extensive sediment wedge in front of a stable former ice margin. An increase in mudstone content northward is accompanied by the occurrence of more evolved turbidites. A widespread surface, bearing streamlined NW–SE striking ridges and grooves, punctuates this succession. The structures on the surface are interpreted to have formed during a regional north-westward ice advance. Above, siltstones bearing Arthrophycus burrows, and Orthocone-bearing sandstones beneath tidal bars testify to glaciomarine conditions for deposition of the underflow deposits beneath. By contrast, the northern basin margin (Jabal az-Zalmah) is appreciably different in recording shallower water/paralic sedimentation styles and major glaciotectonic deformation features, although facies analysis also reveals northward deepening. Here, a siltstone wedging from 8 to 50 m toward the north was deposited (lower delta plain), succeeded by climbing ripple cross-laminated sandstones up to 60 m in thickness (distal through proximal delta mouth bar deposits) with occasional diamictite interbeds. These rocks are deformed by thrusts and > 50 m amplitude fault-propagation folds, the deformation locally sealed by a diamictite then overlain by conglomeratic lag during ultimate deglaciation. Integrating observations from both basin margins, a model of fluvial-dominated delta systems feeding a pulsed debrite and turbidite fan system in a shallow proglacial shelf is proposed.  相似文献   

7.
鄂尔多斯盆地及周缘地区上石炭统本溪组(羊虎沟组)沉积特征对于预测其砂体展布、油气勘探具有重要意义。在野外地质考察、岩心观察和薄片研究的基础上,对本溪组(羊虎沟组)进行了岩石学特征、沉积相类型和空间展布规律等方面的研究。本溪组(羊虎沟组)岩石类型主要为灰白色中—粗砂岩和深灰色、灰黑色泥岩、粉砂质泥岩、泥质粉砂岩,夹多层煤、灰岩和泥灰岩;主要发育浅海陆棚、障壁岛、潮坪、潟湖和扇三角洲沉积。鄂尔多斯盆地中央古隆起西部主要发育扇三角洲、障壁岛和潟湖沉积相,东部主要发育扇三角洲、潟湖、障壁岛和浅海陆棚沉积相,中间过渡带主要为潮坪沉积。自北向南依次发育扇三角洲平原、扇三角洲前缘、潮坪、潟湖和浅海陆棚等沉积。总体上来讲,本溪组(羊虎沟组)为一套海陆交互相沉积建造,具有东、西分异的沉积格局。  相似文献   

8.
A model of sedimentation settings is elaborated for siliciclastic deposits of the Vendian Vanavara Formation, the Katanga saddle, inner areas of the Siberian platform. Four lithologic complexes are distinguished in the formation. The lower complex is composed of proluvial continental deposits exemplifying a dejection cone of ephemeral streams. Its eroded surface is overlain by second complex largely represented by sandstones of coastal zone, which grade upward into siltstones and shales of deeper sedimentation settings (third complex). Sea transgression advanced in northeastern direction. The fourth complex resting with scouring on the third one was deposited in settings of a spacious shallow-water sea zone: in a tidal flat, sand shoals and islands. Sedimentological data are used to correlate more precisely the Vendian siliciclastic deposits of the Katanga saddle and northeastern Nepa-Botuoba anteclise, and to verify subdivision of the Vanavara Formation into subformations and character of its boundary with the overlying Oskoba Formation.  相似文献   

9.
Due to difficulties in correlating aeolian deposits with coeval marine facies, sequence stratigraphic interpretations for arid coastal successions are debated and lack a unifying model. The Pennsylvanian record of northern Wyoming, USA, consisting of mixed siliciclastic–carbonate sequences deposited in arid, subtropical conditions, provides an ideal opportunity to study linkages between such environments. Detailed facies models and sequence stratigraphic frameworks were developed for the Ranchester Limestone Member (Amsden Formation) and Tensleep Formation by integrating data from 16 measured sections across the eastern side of the Bighorn Basin with new conodont biostratigraphic data. The basal Ranchester Limestone Member consists of dolomite interbedded with thin shale layers, interpreted to represent alternating deposition in shallow marine (fossiliferous dolomite) and supratidal (cherty dolomite) settings, interspersed with periods of exposure (pedogenically modified dolomites and shales). The upper Ranchester Limestone Member consists of purple shales, siltstones, dolomicrites and bimodally cross‐bedded sandstones in the northern part of the basin, interpreted as deposits of mixed siliciclastic–carbonate tidal flats. The Tensleep Formation is characterized by thick (3 to 15 m) aeolian sandstones interbedded with peritidal heteroliths and marine dolomites, indicating cycles of erg accumulation, preservation and flooding. Marine carbonates are unconformably overlain by peritidal deposits and/or aeolian sandstones interpreted as lowstand systems tract deposits. Marine transgression was often accompanied by the generation of sharp supersurfaces. Lags and peritidal heteroliths were deposited during early stages of transgression. Late transgressive systems tract fossiliferous carbonates overlie supersurfaces. Highstand systems tract deposits are lacking, either due to non‐deposition or post‐depositional erosion. The magnitude of inferred relative sea‐level fluctuations (>19 m), estimated by comparison with analogous modern settings, is similar to estimates from coeval palaeotropical records. This study demonstrates that sequence stratigraphic terminology can be extended to coastal ergs interacting with marine environments, and offers insights into the dynamics of subtropical environments.  相似文献   

10.
Rocks of the Neoproterozoic Mwashya Subgroup (former Upper Mwashya) form the uppermost sedimentary unit of the Roan Group. Based on new field and drill hole observations, the Mwashya is subdivided into three formations: (1) Kamoya, characterized by dolomitic silty shales/siltstones/sandstones and containing a regional marker (the “Conglomerate de Mwashya” bed or complex); (2) Kafubu, formed by finely bedded black carbonaceous shales; and (3) Kanzadi, marked by feldspathic sandstones. Rocks of the Mwashya Subgroup are overlain by the Sturtian age Grand Conglomérat diamictite (equivalent to the Varianto/Brazil and Chuos/Namibia diamictites), and conformably overlie rocks of the Kansuki Formation (former Lower Mwashya), a carbonate unit containing volcaniclastic beds. New geochemical data confirm the continental rift context of this magmatism, which is contemporaneous with rift-related volcanism of the Askevold Formation (Nosib Group, Namibia). A gradational lithological transition between rocks of the Kansuki and the underlying Kanwangungu Formations, and similar petrological composition of these two formations, support the hypothesis that the Kansuki is the uppermost unit of the carbonate-dominated Dipeta/Kanwangungu sequence, and does not form part of the Mwashya Subgroup. Base metal deposits, mostly hosted in rocks of the Kansuki Formation, include weakly disseminated early-stage low-grade Cu–Co mineralisation, which was reworked and enriched, or initially deposited, by metamorphic fluids associated with the Lufilian orogenic event.  相似文献   

11.
The Rio Dell Formation (Pleistocene and Pliocene), exposed south of Eureka, California, is a prograded sequence of basinal turbidites overlain by basin slope and shelf deposits. The slope deposits studied in the Centerville Beach section accumulated in a steadily shallowing environment delineated by analysis of palaeobathymetrically significant benthonic foraminiferal biofacies in turn suggesting deposition at depths of 1000–100 m. Lower slope deposits interfinger with basinal turbidites derived from the Eel River delta to the north. Slumped blocks of silty mudstone, and associated silt and mud beds, are common. The middle slope deposits are mudstones; coarser sediments bypassed this zone. Mudstones and muddy siltstones alternate on the upper slope. Shallow depressions, probably slump scars, that have been rapidly filled by upper slope sediment are common. The transition to shelf deposits is marked by an increase in sediment grain size, in the degree of oxidation, and in the abundance of megafossils. High percentages of benthonic foraminifera displaced from shelf depths indicate that resedimentation processes are most important on the upper slope.  相似文献   

12.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

13.
Tectonostratigraphy of the exposed Silurian deposits in Arabia   总被引:1,自引:1,他引:0  
Exposed Silurian deposits in Arabia are represented by the Qalibah Group, the Qusaiba and Sharawra formations. The Qusaiba Formation is composed of dark-gray claystones and siltstones. It is disconformably underlain by the Late Ordovician–Early Silurian? Uqlah Formation or unconformably underlain by the Late Ordovician Zarqa or Sarah formations. It is disconformably overlain by the Sharawra Formation. The Early Rhuddanian basal “hot shale” of the Qusaiba Formation represents the early stage of the early Silurian marine transgression over the Gondwana broad shelf. It is a regional marker used to outline the structural configuration of the area prior to the Silurian time. The Sharawra Formation is composed of siltstone and sandstone. It is unconformably overlain by the Late Silurian?–Early Devonian Tawil Formation. Silurian deposits show a pronounced thinning from 992 m in the Tabuk area in the west and are completely missing in the northern part of the Qusayba depression in the east. The thinning of the Qusaiba shale and Sharawra sandstone is interpreted as due to depositional and erosional features, respectively. Thinning and distribution of the Early Rhuddanian shale “hot shale” is depositional which is affected by preexisting Late Ordovician paleo-highs in central Arabia. Thinning of the Sharawra sandstones is erosional which is attributed to Late Silurian tectonic movements synchronous with the Acadian uplift phase of the Caledonian tectonic movements. The main structural elements in central Arabia are represented by the north–south trending and northerly plunging Hail arch and to a much lesser extent the northwest–southeast trending and southerly plunging Qusayba high.  相似文献   

14.
The Drummuck Group of the Girvan district (S. W. Scotland) comprises a varied sequence of marine siliciclastic sedimentary rocks some 350 m thick and ranging in age from early Cautleyan to late Rawtheyan (Ashgill Series). Deposition in an unstable slope environment is envisaged. These upper Ordovician rocks crop out in the centre of the Craighead inlier, north of the Girvan valley and are sporadically exposed and locally very fossiliferous. A detailed revision of the Drummuck rocks has permitted, for the first time, the formal lithostratigraphical division of the group. Four main units, in ascending order, the Auldthorns, Quarrel Hill, Lady Burn and South Threave formations are recognized and, within these, a number of smaller, useful divisions are defined. Detailed geological maps of the Drummuck outcrop are presented. Brachiopods numerically dominate the shelly faunas and all the divisions named are characterized by distinctive brachiopod assemblages. Preliminary correlations are discussed with selected upper Ordovician successions elsewhere but the emphasis of this study is placed upon the establishment of a stratigraphical framework within which future detailed research on the Drummuck faunas may be carried out.  相似文献   

15.
The Palaeozoic intracratonic basins in northwest Gondwana, i.e. the Amazonas, Parnaiba and Acera basins, probably opened during late Caradoc and Ashgill times. The fluviatile sedimentation later changed to littoral at the basinal margins. A transgression from the north-west region of Gondwana slowly overlapped the margins of the intracratonic basins. The transgression reached its maximum in the Rawtheyan (late Ashgill), as evidenced by fossiliferous shallow marine sediments in the Amazonas Basin. The Hirnantian glaciation in north Gondwana lowered the sea level, and in the Amazonas Basin a littoral sedimentation followed on shallow marine strata. From the opening of the basins onwards, a shallow sea probably existed close to the epicontinental basins in north-west Gondwana. The basins were connected via a narrow passage between the Guayana and Ivorian cratons.  相似文献   

16.
17.
The Caradoc of the Berwyn Hills is a thick sequence of marine mudstones and siltstones with interstratified sub-aerial tuff formations. Near the top of the succession there is a sharp facies change to graptolitic shales. The sequence has been re-mapped and two new formations (the Pen-plaenau Siltstone Formation and Cwm Rhiwarth Siltstone Formation) and one new member are proposed. Assemblage zones can be traced round the outcrop in the lower part of the sequence (Soudleyan) but higher in the succession (Longvillian) there are differences between the faunal assemblages of the north and west. The northern faunas are referred to Dalmanella community which is believed to have occupied a shallower environment than the Nicolella community to the west. In spite of the presumed environmental control of the faunas, the sequence can be fairly precisely correlated with the classic sections in Shropshire and Bala. The Caradoc sedimentary sequence represents a mainly shallow sub-tidal environment with periodic episodes of local emergence. The area deepened during the Longvillian, particularly in the west. There followed a period of non-deposition with probably some erosion at the base of the Nod Glas which itself represents a period of reduced sediment. There is a well-known stratigraphic break at the base of the Ashgill which rests on rocks of Onnian age and on different horizons of the Longvillian.  相似文献   

18.
安徽巢湖凤凰山石炭纪岩石特征及沉积环境分析   总被引:10,自引:0,他引:10  
巢湖市北郊石炭纪地层发育齐全,沉积环境多样,海平面升降频繁。根据岩性、生物与沉积构造等相标志,将其划分为开放海湾、潮坪、潮下浅滩、开阔台地等沉积相。对和州组顶部炉渣状灰岩的形成机制提出不同见解。  相似文献   

19.
利用辽东湾西北部A区6口井的录井、测井、岩心资料,通过细致的层序地层学及沉积学分析,将研究层段自下而上划分为SQs2和SQs1两个三级层序,每个层序均可划分出湖扩体系域(TST)和高位体系域(HST),并识别出三个层序边界和两个最大湖泛面,自下而上分别为SQs2底界面SBs2、最大湖泛面mfss2、SQs1底界面SBs1、最大湖泛面mfss1、SQs1顶界面SBd3。钻井揭示沙二段主要为砂岩、含砾砂岩,以粗碎屑岩发育为特征;沙一段主要为泥岩和白云岩,以泥岩发育为主要特征。研究区沉积相为湖泊相,滨浅湖亚相,微相发育泥滩、混合滩、砂质滩坝和钙质浅滩。低突起及其斜坡地区,在SQs2以混合滩沉积为主,在SQs1以泥滩沉积为主;陡坡地区,在SQs2发育砂质滩坝,在SQs1发育钙质浅滩。SQs2砂岩发育层段和SQs1的生物白云岩发育层段为良好的储层。  相似文献   

20.
根据钻井岩心、铸体薄片、扫描电镜、测录井资料及分析化验资料,对柴达木盆地北缘西段平台地区古近系路乐河组地层岩心的沉积构造、粒度特征、沉积序列等进行详细研究,分析平台地区古近系路乐河组的沉积相类型及演化过程。研究表明,平台地区路乐河组主要受近源沉积控制,沉积了一套以砾岩、含砾粗砂岩、泥质粉砂岩和泥岩为主的粗粒碎屑岩,发育槽状交错层理和板状交错层理,成分成熟度和结构成熟度较差。粒度概率累积曲线显示碎屑颗粒沉积物主要由悬浮组分和跳跃组分组成,表明水动力条件较强,以河流相沉积为主。沉积微相类型以河床亚相的河床滞留和心滩沉积为主,其次为河漫亚相的河漫滩沉积和泛滥平原沉积。沉积相的研究清楚展示出平台地区古近纪早期路乐河组的沉积特征和演化规律,为该地区下一步油气勘探工作提供可靠的地质依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号