首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution geochemical, isotope and elemental data from core PC23A in the northern margin of the Aleutian Basin (Bering Sea) were used to reconstruct distinct paleoceanographic features of the last deglaciation (pre-Boreal[PB], Bølling-Allerød[BA], Younger Dryas[YD]). The PB and BA intervals are characterized by increased siliceous (diatom) and calcareous (coccolithophores and foraminifers) productivity represented by high biogenic opal and CaCO3 contents, respectively. The enhanced productivity can plausibly be attributed to an elevated sea-surface nutrient supply from increased melt-water input and enhanced Alaskan Stream injection under warm, restricted sea-ice conditions. High Corg/N ratios and low δ13C values of sediment organic matter during the PB and BA intervals reflect the contribution of terrestrial organic matters. The PB and BA intervals were also identified by laminated sediment layers of core PC23A, characterized by high Mo/Al and Cd/Al ratios, indicating that the bottom water condition remained anoxic. High δ15N values during the same period were attributed mainly to the increased nutrient utilization and subsequent denitrification of seawater nitrate. Part of high δ15N values may also be due to incorporation of inorganic nitrogen in the clay minerals. It is worthy of note that high total organic carbon (TOC) deposition occurred approximately 3,000 years before onset of the last deglaciation. Simultaneous high Corg/N ratios and low δ13C values clearly suggest that the high TOC content should be related to terrestrial organic carbon input. Low δ15N values during the high TOC interval also confirm the contribution of terrigenous organic matter. Although abundant calcareous phytoplankton production under cold, nutrient-poor conditions represented by Baex data was reported for high TOC deposition preceding the last deglaciation in an earlier study of the Okhotsk Sea, the main reason for the enhanced TOC deposition in the Bering Sea is an increased terrigenous input from the submerged continental shelves (Beringia) with a sea-level rise; this is further supported by Al enrichment of bulk sediments during the high TOC deposition.  相似文献   

2.
Kelp holdfasts are highly reticulated structures which host a large diversity of small fauna. These microhabitats have been reported to play a crucial role in the biodiversity associated to kelp forest ecosystems. This study aimed at identifying trophic links and the main food sources sustaining food webs within communities associated with kelp holdfasts, through a stable isotope (δ13C and δ15N) approach. Sampling of the main invertebrates inhabiting Laminaria digitata holdfasts, and of their potential food sources, took place in February and May 2007. Stable isotope results reveal that most of the primary consumers, including filter-feeders and deposit-feeders, rely on the particulate organic matter sedimented within kelp holdfasts. Only three grazers departed from this general pattern. The correspondence between the stable isotope ratios of predators and sediment consumers indicated that this source is at the base of the main pathway through which energy and matter transit in the food web. δ15N ranges found for consumers revealed that the food web associated with kelp holdfasts is composed of 3.5 levels. In spite of the low diversity of food sources at the base of the food web, these microhabitats can therefore be considered micro-scale ecosystems, from a functional perspective.  相似文献   

3.
Causes of variation in mobilization of mercury into Black-winged Stilt Himantopus himantopus chicks were studied through analysis of stable isotope ratios of carbon and nitrogen. Blood and breast feathers were collected from chicks in coastal saltpans during successive breeding seasons. Detritus samples and potential prey (macroinvertebrates) were also collected. Total mercury concentrations and stable isotope signatures were measured using atomic absorption spectroscopy and isotope ratio mass spectrometry respectively. Mercury levels in Chironomidae, Corixidae and Hydrophilidae correlated with mercury levels in chick feathers. Differences of δ15N signatures between macroinvertebrate groups indicated that they belong to different trophic levels. δ15N signatures of invertebrates correlated with mercury levels in invertebrates and chicks, but not with δ15N signatures in chicks. Between-group and between-site differences of δ15N signatures and mercury levels in invertebrates suggested that they contribute differently to mercury mobilization into chicks, and their relative contribution depends on prey availability in each site. Inter-site differences in the biomagnification factor reinforced that idea. δ13C signatures in invertebrates marked a larger range of carbon sources than just detritus. Variation of water inflow regime and prey availability may cause between-group and between-site differences of δ13C signatures in prey. Discrepancies between feather and blood for δ13C signatures in Praias-Sado and Vaia suggested that temporal variation of prey availability may be the main factor affecting mercury mobilization into chicks in both those cases, since their water inflow regimes are the same. The lowest levels of δ13C signatures in Vau suggested that water inflow regime may be the main factor in this case, since no discrepancy existed in δ13C signatures between blood and feather.  相似文献   

4.
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.  相似文献   

5.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

6.
Origin of sedimentary organic matter in the north-western Adriatic Sea   总被引:1,自引:0,他引:1  
In order to evaluate the origin and the transformation of organic matter on the shallow shelf of the NW Adriatic Sea, organic carbon, total nitrogen and stable isotope ratios of organic carbon were analysed in riverine suspended matter and sediments as well as in marine suspended and sedimentary organic matter, in marine phytoplankton and zooplankton.The deposition of organic matter is influenced by fine sediment concentration. Surface sediments were characterised by highly variable biogeochemical conditions on the sea floor, whereas sub-surface sediments showed a more homogeneous hypoxic/anoxic environment.Low Corg/N ratio and high organic carbon and nitrogen concentrations in riverine suspended organic matter indicate an important contribution of freshwater phytoplankton within rivers, particularly during low flow regimes, which adds to the marine phyto- and zooplankton at shelf locations.In order to evaluate the importance of terrestrial, riverine and marine sources of OM in shelf sediments, a three end-member mixing model was applied to shelf surface sediments using 13C/12C values for organic matter and N/C ratios. The model showed an elevated contribution of terrestrial organic substances at intermediate depths (10–15 m), mostly corresponding to an area of coarser grain-size, whereas the riverine and marine organic fractions were mainly accumulating near the coast and offshore, respectively.  相似文献   

7.
Organic matter in a tropical mangrove ecosystem was characterized by stable carbon and nitrogen isotopic analyze, conducted on various organic samples, including land and mangrove plants, soils, particulate organic matter (POM), and sea and river sediments along the southwestern coast of Thailand. The δ13C values of land plants and POM in river water can be explained in terms of a greater influence of C3 plants than C4 plants in this area. The POM and sediments from the Trang River and Ko Talibong area showed systematically higher δ15N values than those from Ko Muk and other coastal areas. Organic matter in the Trang River might be influenced by nitrogen released from agricultural or human waste, which could affect the isotopic composition of POM and sediments in the Trang River estuary and along the coast near the river mouth. We used a stochastic method to estimate the contributions of four organic end-members, identifiable by their δ13C and δ15N values. The results implied that seagrasses were a major source of sedimentary organic matter, contributing 42 ± 5% in the Ko Muk area and 36 ± 5% in the Ko Talibong area. The contribution of coastal POM to sediments was estimated to be only 13% in Ko Muk and 19% in Ko Talibong. Mangrove plants contributed approximately 23% in both areas. It was concluded that seagrasses are an important source of sedimentary organic matter in this coastal region of southwestern Thailand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
2015年夏季开展了大亚湾悬浮颗粒有机物碳(POC)、氮含量(PN)及其同位素组成的研究,结果表明,δ13CPOC和δ15NPN的变化范围分别为-25.7‰~-17.4‰和-6.3‰~10.4‰,平均值分别为-20.2‰和8.2‰。大亚湾悬浮颗粒有机物含量及其碳氮同位素组成的空间变化反映了不同有机质来源的影响:喜洲岛附近海域表现出高POC、PN、δ13CPOC和δ15NPN的特征,指征着浮游植物水华的主导贡献;东北部范和港附近海域具有高POC、PN、低δ13CPOC和高δ15NPN的特征,反映了河流/河口水生有机物的影响;湾顶白寿湾附近海域的δ13CPOC和δ15NPN出现低值,体现了陆源有机质和人类污水排放的影响。借助δ13CPOC和δ15NPN的三端元混合模型,定量出海洋自生有机质、陆源有机质、河流/河口水生有机质等3个来源的贡献平均分别为70%、13%和17%,其中海洋自生有机质是夏季大亚湾悬浮颗粒有机物的最主要来源。从这3种来源颗粒有机物含量的空间变化看,海洋自生有机质含量由湾内向湾外减少,与初级生产力的空间变化相对应;河流/河口水生有机质含量在大亚湾东北部出现高值;陆源有机质含量在表、底层出现不同态势,表层陆源有机物含量在湾中部海域最低,而底层则呈现出自湾内向湾口增加的趋势,主要受控于离岸距离和珠江冲淡水、粤东沿岸上升流输送的影响。  相似文献   

9.
Stable isotope analysis of fish tissue can aid studies of deep-sea food webs because sampling difficulties severely limit sample sizes of fish for traditional diet studies. The carbon stable isotope ratio (δ13C) is widely used in food web studies, but it must be corrected to remove variability associated with varying lipid content in the tissue. A lipid correction has not been determined for any deep-sea fish. These fishes are ideal for studying lipid correction because lipid content varies widely among species. Our objective was to evaluate an application of a mass balance δ13C correction to a taxonomically diverse group of deep-sea fishes by determining the effect of lipid extraction on the stable isotope ratios, examining the quality of the model parameters derived for the mass balance correction, and comparing the correction to published results. We measured the lipid extraction effect on the nitrogen stable isotope ratio (δ15N) and δ13C of muscle tissue from 30 North Atlantic species. Lipid extraction significantly increased tissue δ15N (+0.66‰) and δ13C values, but the treatment effect on δ13C was dependent on C:N, a proxy for lipid content. We compared the lipid-extracted δ13C to the δ13C predicted by the mass balance correction using model variables estimated from either all individuals (pooled) or species-by-species or using published values from other species. The correction using the species-by-species approach performed best; however, all three approaches produced corrected values that were generally within 0.5‰ of the measured lipid-free δ13C and that had a small over-all bias (<0.5‰). We conclude that a generalized mass balance correction works well for correcting δ13C in deep-sea fishes, is similar to that developed for other fishes, and recommend caution when applying a generalized correction to fish with high lipid content (C:N >8).  相似文献   

10.
CaCO3 and total organic carbon concentrations, organic matter C/N and carbon isotope ratios, and sediment accumulation rates in late Quaternary sediments from DSDP Site 594 provide information about glacial–interglacial variations in the delivery of organic matter to the Chatham Rise offshore of southeastern New Zealand. Low C/N ratios and nearly constant organic δ13C values of −23‰ indicate that marine production dominates organic matter supply in both glacial and interglacial times during oxygen isotope stages 1 through 6 (0–140 ka) and 17 through 19 (660–790 ka). Increased organic carbon mass accumulation rates in isotope stages 2, 4, 6, and 18 record enhanced marine productivity during glacial maxima. Excursions of organic δ13C values to ca. −29‰ in portions of isotope stage 2 suggest that the local concentration of dissolved CO2 was occasionally elevated during the last glacial maximum, probably as a result of short periods of lowered sea-surface temperature. Dilution of carbonates by clastic continental sediment generally increases at this location during glacial maxima, but enhanced delivery of land-derived organic matter does not accompany the increased accumulation of clastic sediments.  相似文献   

11.
The 87Sr, 13C, and 15N isotopic signatures of organic matter in sediments from the continental shelf facing the Orinoco Delta were measured to determine the contribution of sediments transported from the Amazon River by the coastal Guayana current and the sediments transported by the Orinoco River. Box core samples between 60 and 300 m water depth collected along 4 transects located eastwards to the Orinoco Delta were analyzed. Carbon and nitrogen concentrations decreased with depth under water on the shelf, and were strongly correlated indicating homogeneity of organic matter composition. Phosphorus content was also associated to organic matter in most samples, but some of them revealed deposition of P-enriched sediments. The 87Sr/86Sr ratios showed a strong continental signature averaging 0.7117, therefore, limiting the possible carbon and nitrogen sources associated with these sediments to C3 trees, C4 grasses, or freshwater phytoplankton. The δ13C values were relatively high averaging −21‰, above values reported for sediments on the Amapá shelf and the Amazon River in Brazil. Average δ13C values did not differ significantly among transects. High δ13C values point to the influence of organic matter transported from the C4-plants dominated savannas in the northern fringe of the Orinoco River. δ15N values were positive and averaged 5‰, being within the range of values measured in the Marajo island (Amazon River) and the estuary of the Pará River. The δ15N values differed significantly among transects (4.9–5.2‰), lowest values corresponding to the northernmost transect near the coast of Trinidad, and the highest values corresponding to the transect located at the southernmost position.  相似文献   

12.
Freshwater input is known to have the potential to influence marine pelagic and benthic communities through the export of nutrients, sediments and detritus. The increase in nutrients of riverine origin in coastal environments can enhance primary production in coastal areas, supporting a diverse and rich fauna. However, it is not clear how and to what extent these freshwater inputs influence marine populations. We investigated the potential effects of freshwater input on the diets of intertidal benthic organisms in situ on the east coast of South Africa, analysing their δ13C and δ15N stable isotope and fatty acid content. Specifically, we investigated the dietary regime of three barnacle and one mussel species in relation to their proximity to the mouths of large rivers. Strong dissimilarities among species were recorded with both techniques; however, no significant effect of freshwater input was observed for any of them. There are several possible explanations for these results, including rapid dilution, with fresh water near the river mouth being thoroughly mixed with seawater, resulting in a riverine influence being too weak to be detectable in the signatures of benthic populations. Our results contrast with a previous study conducted in the same area, where it was suggested that demersal organisms relied on freshwater-derived organic matter. Our study, however, showed no freshwater effect either within a few metres or tens of kilometres from the nearest large river mouths, supporting the notion that freshwater input does not play an important role for the benthic intertidal community in the ecosystems studied. Given that freshwater input is likely to diminish in the future, because of increased human abstraction of water, any potential effects of freshwater input on these marine populations are likely to be further reduced.  相似文献   

13.
We have conducted elemental, isotopic, and Rock-Eval analyses of Cenomanian–Santonian sediment samples from ODP Site 1138 in the southern Indian Ocean to assess the origin and thermal maturity of organic matter in mid-Cretaceous black shales found at this high-latitude location. Total organic carbon (TOC) concentrations range between 1 and 20 wt% in black to medium-gray sediments deposited around the Cenomanian–Turonian boundary. Results of Rock-Eval pyrolysis indicate that the organic matter is algal Type II material that has experienced modest alteration. Important contributions of nitrogen-fixing bacteria to the amplified production of organic matter implied by the high TOC concentrations is recorded in δ15N values between −5 and 1‰, and the existence of a near-surface intensified oxygen minimum zone that favored organic carbon preservation is implied by TOC/TN ratios between 20 and 40. In contrast to the marine nature of the organic matter in the Cenomanian–Turonian boundary section, deeper sediments at Site 1138 contain evidence of contributions land-derived organic matter that implies the former presence of forests on the Kerguelen Plateau until the earliest Cenomanian.  相似文献   

14.
The trophodynamics of mesopelagic (macrozooplankton/micronekton) and benthic boundary layer (suprabenthos=hyperbenthos) faunas from the Algerian Basin were characterized on a seasonal scale through stable carbon and nitrogen isotopic analyses of a total of 34 species and two broad taxa (Copepoda and Cumacea). This is the first study simultaneously focused on trophodynamics of deep-sea zooplankton and suprabenthos. Samples were collected southeast of Mallorca (Algerian Basin, Western Mediterranean), on the continental slope close to Cabrera Archipelago, at 650–780 m depths, ca. bi-monthly between August 2003 and June 2004. Mean δ13C values of suprabenthos ranged from ?21.1‰ (Munnopsurus atlanticus) to ?16.7‰ (Cyclaspis longicaudata). Values of δ15N ranged from 2.8‰ (Lepechinella manco) to 9.9‰ (larvae of Gnathia sp.). The stable isotope ratios of suprabenthic fauna displayed a continuum of values, confirming a wide spectrum of feeding guilds (from filter feeders/surface deposit feeders to predators). According to the available information on diets for suprabenthic species, the highest annual mean δ15N values were found for the hematophagous isopod Gnathia sp. parasite on fish (represented by Praniza larvae) and carnivorous amphipods (e.g. Rhachotropis spp., Nicippe tumida) consuming copepods, and the lowest δ15N values were found for two cumaceans (Cyclaspis longicaudata and Platysympus typicus) feeding on detritus. Assuming a 15N-enrichment factor of 2.5‰ and deposit feeders as baseline, we found three trophic levels in suprabenthic food webs. δ13C ranges were particularly wide among deposit feeders (ranging from ?21.8% to ?17.3‰) and omnivores (from ?20.5% to ?18.8‰), suggesting exploitation of particulate organic matter (POM) of different characteristics. Our isotopic analyses revealed lower ranges of δ13C and δ15N for macrozooplankton/micronekton, compared with suprabenthos. δ13C values of zooplankton taxa ranged from ?21.1‰ (the hyperiid Phrosina semilunata) to ?19.9‰ (the decapod Pasiphaea multidentata), while δ15N values ranged from 3.9‰ (P. semilunata) to 7.5‰ (P. multidentata). Among zooplankton, more enriched δ15N values were found among carnivores (e.g. the fish Cyclothone spp. and Pasiphaea multidentata) preying on copepods, hyperiids, euphausiids and small fish. The lowest δ15N values were found for hyperiids that feed on the mucus nets of salps (e.g. Vibilia armata). After contrasting isotope analysis with dietary data, we conclude there were two trophic levels among zooplankton/micronekton. Strong correlation between the mean annual δ15N and δ13C values was found for zooplankton (R2=0.7), but not for suprabenthos, which suggests a single source of carbon for plankton. We found a general seasonal trend for δ13C enrichment from late autumn (November) to late winter–spring (February–April) for both suprabenthos and zooplankton. The δ13C enrichment in February–April was correlated in zooplankton with higher surface chlorophyll a concentration 1 month before sampling. As evidenced by δ13C–δ15N correlations, the response of zooplankton to the peak of surface primary production was almost immediate (an increase of δ13C–δ15N correlations in February), and stronger than for suprabenthos. The response among suprabenthos was weak, with slight increase in δ13C–δ15N relationships in April–June.  相似文献   

15.
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ13C of estuarine surface sediment increases from −25.0 ± 1.3‰ in the freshwater environment to −21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C3 plants have lower δ13C than C4 plants (−29.0 ± 1.8‰ and −13.1 ± 0.5‰ respectively). δ13C increases from −28.3 ± 0.8‰ in the forest soil to around −24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C4 grasses. The δ13CPOC increases from −27.6 ± 0.8‰ in the freshwater areas to −22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between −24.0‰ in freshwater areas and −25.4‰ in brackish-water areas in summer. Comparison of the δ13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ13C of sedimentary organic matter due to some agricultural products such as sugarcane, C3 plants are still the dominant vegetation type in this area, and the bulk organic δ13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.  相似文献   

16.
《Marine Chemistry》2007,103(1-2):97-102
Carbon (13C) and nitrogen (15N) stable isotope analysis has become increasingly important in the study of energy flow and tropho-dynamics in many ecosystems. Prior to analysis, samples are often pre-treated with acids to remove inorganic carbonates which may bias the results. The effects of pre-analysis acidification on isotopic values are, however, still poorly understood for marine producers (e.g. algae and cyanobacteria), and consumers (e.g. molluscs), which may confound the comparability of different studies. In this study, such effects (untreated vs. decalcified samples) were examined at two different sampling periods (summer and winter). Acidification did not seem to affect the isotopic composition of consumers, but reduced both δ13C and δ15N of producers. This effect was consistent for the two sampling periods, although both producers and consumers had more enriched δ13C and δ15N values in summer. Acidification had the most distinct, negative effect on the isotopic values of samples which had low carbonate contents. It is, therefore, important to be aware of temporal variations in sample isotopic values and especially the effects of sample treatment when attempting to compare different studies. As an attempt to standardize protocols, it is recommended that only acid-washing carbonate-rich samples is adopted as the most appropriate pre-analysis treatment.  相似文献   

17.
为了解胶州湾水体和表层沉积物营养环境状况及其主要影响因素,于2019年8月在胶州湾30个站位点采集了海水和表层沉积物样品,并于2021年5月在胶州湾沿岸采集了18个站位点的水样,对水体溶解无机态营养盐浓度和组成以及表层沉积物中总有机碳、总氮、总磷及生物硅含量和碳、氮稳定同位素(δ13C、δ15N)进行了分析。结果表明,胶州湾内水体和沿岸水体中溶解无机氮、溶解无机磷和溶解硅酸盐浓度空间分布相近,高值均位于湾东北部,主要受到河流输入和沿岸污水排放的影响,低值主要出现在湾中部和湾口处。结合近30年来的历史数据分析发现,胶州湾夏季营养盐浓度在1990-2008年期间呈持续上升的趋势,政府实施的污染物总量控制措施以及河流径流量下降使得2006年以来营养盐浓度呈现下降的趋势,该变化在空间上主要体现为大沽河氮、磷输入量的减少及其对应的湾西部营养盐高值的消失。胶州湾氮、磷营养盐输入的不平衡使得“磷限制”在2000年后逐渐加剧。胶州湾表层沉积物中总有机碳、总氮、总磷含量高值均集中于东北部和东部沿岸,结合生物硅和水体营养盐含量分析显示,这主要是河流与排污输入及其...  相似文献   

18.
This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Mediterranean estuaries that are infilling with sediments and classified as river-dominated disequilibrium estuaries. The results have shown that the longitudinal distribution of heavy metals in sediments follows the sedimentation dynamics and deposition pattern of river-borne, clay mineral particles. The highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter, and decreases toward the open sea. The vertical distribution of metals in sediment cores depends on the prevailing pH and Eh conditions. Significant increases of the concentrations of metals in the uppermost strata are the result of recent anthropogenic inputs. The share of the terrestrial component in SOM, estimated by N/Corg atomic ratios and δ13C values, decreases with distance from the river mouth. The small vertical variation in δ13C values of SOM indicates that a fast sedimentation rate overrides the diagenetically determined decomposition. The results obtained indicate that river-borne inorganic particles, natural terrigenous organic material, and anthropogenic metal loads are trapped in sediments of the estuarine system. Under the prevailing conditions, there is negligible transport towards the open sea.  相似文献   

19.
Macroalgae contribute to intertidal food webs primarily as detritus, with unclear implications for food web studies using stable isotope analysis. We examined differences in the thallus parts of two South African rhodophytes (Gelidium pristoides and Hypnea spicifera) and changes in overall δ13C, δ15N signatures and C:N ratios during degradation in both the field and laboratory. We hypothesized that both degrading macroalgal tissue and macroalgal-derived suspended particulate material (SPM) would show negligible changes in δ13C, but enriched δ15N signatures and lower C:N ratios relative to healthy plants. Only C:N laboratory ratios conformed to predictions, with both species of macroalgae showing decomposition related changes in δ13C and significant depletions in δ15N in both the field and laboratory. In the laboratory, algal tissue and SPM from each species behaved similarly (though some effects were non-significant) but with differing strengths. Gelidium pristoides δ13C increased and C:N ratios decreased over time in tissue and SPM; δ15N became depleted only in SPM. Hypnea spicifera, δ13C, δ15N and C:N ratios all decreased during degradation in both SPM and algae.  相似文献   

20.
Organic carbon (C) and total nitrogen (N) contents and corresponding isotope ratios were determined in surficial sediment (0–3 cm) at 94 stations ranging from 21 to 1995 m water depth off Tokachi, Hokkaido, Japan, to elucidate the distribution and source of sedimentary organic matter. Suspended particulate organic matter (POM) in the seawater and suspended POM and sediment in the Tokachi River were also examined. δ13C, δ15N and C / N ratios of the samples in the Tokachi River suggest that the spring snowmelt is an important process for the transport of terrestrial organic matter to the coastal waters. δ13C values of suspended POM in the surface seawater were higher in May and November than in August, while δ15N values of the POM were higher in May and August than in November. These changes are attributed to seasonal changes in phytoplankton growth rate and nitrate availability. δ13C and δ15N values in the sediments off Tokachi were lowest near the Tokachi River mouth, and increased offshore to constant values that persisted from 134 to 1995 m water depth. The spatial variation in C / N ratios in the sediment mirrored those of δ13C and δ15N. Comparison of δ13C, δ15N and C / N ratios in the sediments off Tokachi with those in the Tokachi River and seawater indicates that about half of the organic matter in the sediment was of terrestrial origin near the Tokachi River mouth, and the sedimentary organic matter from 134 to 1995 m water depth was of marine origin. The organic C content in the sediment was high near the Tokachi River mouth, and also around 1000 m water depth. The C content was significantly correlated with silt plus clay content, with different regression lines for those stations shallower and deeper than 134 m, owing to several stations of higher C content with the elevated C / N ratio on the inner shelf. These results suggest that transport and deposition of organic-rich fine sediment particles by hydrodynamic processes were major factors controlling C content off Tokachi. In addition, the supply of a fraction of terrestrial organic matter with high C / N probably also affected C content on the inner shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号