首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An approximate carbon budget for the Sierra Leone River Estuary and adjacent inner continental shelf indicates that phytoplankton production is balanced by grazers only in the wet season estuary; on the continental shelf, and in the dry season estuary, phytoplankton production exceeds demand of consumer populations by 70–90%. Regional production is dominated by the dry season estuary where diatom blooms support large population of the phytophagous clupeid fish Ethmalosa fimbriata. It is suggested that as well as what is used in bacterial respiration, not quantified in the study, important amounts of inshore organic carbon production are available for export, or burial, or both, either in inshore mudbanks or at the shelf edge by slumping. This carbon budget for a tropical continental shelf having neither coral-reefs nor coastal upwelling appears to correspond with what is emerging as a generic distinction between shelves and open ocean ecosystems: surplus production on shelves, balance between producers and consumers in the open ocean.  相似文献   

2.
The 87Sr, 13C, and 15N isotopic signatures of organic matter in sediments from the continental shelf facing the Orinoco Delta were measured to determine the contribution of sediments transported from the Amazon River by the coastal Guayana current and the sediments transported by the Orinoco River. Box core samples between 60 and 300 m water depth collected along 4 transects located eastwards to the Orinoco Delta were analyzed. Carbon and nitrogen concentrations decreased with depth under water on the shelf, and were strongly correlated indicating homogeneity of organic matter composition. Phosphorus content was also associated to organic matter in most samples, but some of them revealed deposition of P-enriched sediments. The 87Sr/86Sr ratios showed a strong continental signature averaging 0.7117, therefore, limiting the possible carbon and nitrogen sources associated with these sediments to C3 trees, C4 grasses, or freshwater phytoplankton. The δ13C values were relatively high averaging −21‰, above values reported for sediments on the Amapá shelf and the Amazon River in Brazil. Average δ13C values did not differ significantly among transects. High δ13C values point to the influence of organic matter transported from the C4-plants dominated savannas in the northern fringe of the Orinoco River. δ15N values were positive and averaged 5‰, being within the range of values measured in the Marajo island (Amazon River) and the estuary of the Pará River. The δ15N values differed significantly among transects (4.9–5.2‰), lowest values corresponding to the northernmost transect near the coast of Trinidad, and the highest values corresponding to the transect located at the southernmost position.  相似文献   

3.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

4.
The isotopic composition (δ13C and δ15N) and organic carbon (OC) and total nitrogen (TN, organic plus inorganic) content of 37 carbonate-free surficial sediments of the subtropical Pearl River estuary and the adjacent shelf of South China Sea (SCS) was determined. The δ13C values indicate that the sediment organic material is a mixture from two sources, terrestrial and marine. Several of the sediments have extremely low (< 4) OC / TN ratios, which could be due to low OC contents and/or to a significant fraction of the TN present as inorganic nitrogen adsorbed on clays. In general, the spatial patterns of OC, TN, δ13C and δ15N are similar. Values are low at the river mouth and on the western coast, suggesting proportionally greater accumulation of terrestrial particulate organic matter relative to marine phytodetritus, which is limited by low productivity in the turbid plume of the Pearl River. Algal-derived organic carbon (al-OC) content is estimated to be low (≤ 0.06%) at the river mouth and higher (up to 0.57%) on the adjacent inner shelf based on a mixing model of end members.  相似文献   

5.
Settling particles and surface sediments collected from the western region of the Sea of Okhotsk were analyzed for total organic carbon (TOC), long-chain n-alkanes and their stable carbon isotope ratio (δ13C) to investigate sources and transport of total and terrestrial organic matter in the western region of the sea. The δ13C measurements of TOC in time-series sediment traps indicate lateral transport of resuspended organic matter from the northwestern continental shelf to the area off Sakhalin via the dense shelf water (DSW) flow at intermediate depth. The n-alkanes in the surface sediments showed strong odd carbon number predominance with relatively lighter δ13C values (from −33‰ to −30‰). They fall within the typical values of C3-angiosperms, which is the main vegetation in east Russia, including the Amur River basin. On the other hand, the molecular distributions and δ13C values of n-alkanes in the settling particles clearly showed two different sources: terrestrial plant and petroleum in the Sea of Okhotsk. We reconstructed seasonal change in the fluxes of terrestrial n-alkanes in settling particles using the mixing model proposed by Lichtfouse and Eglinton [1995. 13C and 14C evidence of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry 23, 969–973]. Results of the terrestrial n-alkane fluxes indicate that there are two transport pathways of terrestrial plant n-alkanes to sediments off Sakhalin, the Sea of Okhotsk. One is lateral transport of resuspended particles with lithogenic material from the northwestern continental shelf by the DSW flow. Another is the vertical transport of terrestrial plant n-alkanes, which is independent of transport of lithogenic material. The latter may include dry/wet deposition of aerosol particles derived from terrestrial higher plants possibly associated with forest fires in Siberia.  相似文献   

6.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

7.
To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg l−1) and the absence of an inverse relationship between DOC and discharge. Most DOC originating from waste water being discharged in tributaries of the estuary appears to be remineralised before these tributaries reach the main estuary. Although dense phytoplankton blooms were observed in the upper estuary during summer (up to 700 μg chl a l−1), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater tidal reaches of the Schelde estuary.  相似文献   

8.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

9.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

10.
During the ECOFER experiment (French ECOMARGE program), surficial sediments were sampled on the Aquitanian margin with box corers and analyzed to determine the quantity and quality of organic matter. Sediments from the margin are enriched in organic carbon (mean value 1.35%) in comparison to deep-sea and shelf sediments, due to a fine grain-size sedimentation. As sedimentation rates are high, the margin appears to be an organic depocenter. Some preferential organic enrichment zones were identified in the Cap-Ferret Canyon. There is a supply of continental material from the Gironde estuary, but marine contribution seems more possible than Adour or spanish rivers. No seasonal variations of organic matter were observed at the surface of sediments, suggesting mineralization processes of labile organic matter: average organic carbon consumption was evaluated to 9.0 g C m−2 yr−1. Rapid biological mineralization processes are lower than on the Mediterranean margin, mainly related to significant differences in water temperature. The great width of the canyon, its distance from the continent, and the current circulation pattern prevent any precise recording of the variable organic inputs to the sediment and favor nepheloı̈d transport, resuspension and shelf break processes, which wipe out any print of fresh material input. An organic carbon budget indicates that an equilibrium between organic inputs and organic mineralization+accumulation is not obtainable. The supply of suspended matter could have been minor during the year in question, and sedimentation rates are still imprecise.  相似文献   

11.
Five oceanographic surveys were carried out in the East China Sea (ECS) and Yellow Sea from 1999 to 2003. In all, seven different sections were surveyed, but one section (the PN section) was observed on every cruise. Two time-series stations were also surveyed, one located at the Changjiang River mouth, the other over the continental shelf in the PN section.We identified biogeochemical characteristics for waters close to the Changjiang Estuary and in the Kuroshio waters (KW), respectively. Resuspension is a strong feature near bottom over the ECS continental shelf, with suspended matter values 13 times higher than that for the surface. A model of particulate organic carbon (POC) dynamics based on a rectangle equation reveals that POC concentration close to the Changjiang Estuary varies with a semidiurnal period of ∼13 h, coinciding with the tidal period. The upper limit for POC residence times in the seasons we covered over the shelf are estimated to be on the order of weeks and generally increase seaward from near the Changjiang Estuary to the KW. Short POC residence times suggest that POC in the ECS is rapidly exported from euphotic waters.A nepheloid layer, observed as elevated suspended matter in near the bottom of the water column, is important in particle transfer over the shelf, especially in winter when the residual current flows mainly eastward. Cross-shelf transport of POC via the nepheloid layer is estimated to be 0.22 × 1012 g yr−1. Comparison with other work indicates that POC transport is ∼2% of the Changjiang POC input.  相似文献   

12.
The data for the present study were collected at 20 sampling stations in the Kara Sea along the transect from the Ob estuary to the deep sea St. Anna Trough in September 2007. Based on the hydrophysical features, the distribution of the Chl a, and the primary production, we distinguished six habitats: the river, estuary, inner and outer shelf, continental slope, and trough. The impact of the small-size (<0.5 mm) and large-size (>0.5 mm) fractions of the zooplankton on the phytoplankton’s organic carbon in the different regions of the Kara Sea was estimated. The ingestion rate was assessed using the analysis of the gut fluorescence content and the gut evacuation rate. The zooplankton grazed 1–2% of the phytoplankton biomass in the river and estuary; 3.5% over the shelf; and 6 and 10% in the regions of the trough and slope, respectively. The grazing impact of the small-sized zooplankton increased from the river zone to the deep regions (from 1 to 90%) along with their share in the total zooplankton abundance (from 18 to 95%). From 72 to 86% of the primary production was grazed over the shelf and slope. The primary production did not cover the feeding requirements of the zooplankton in the estuarine regions and St. Anna Trough in the autumn. In the estuarine regions, the major portion of the organic matter settles on the bottom due to the strong inflow of the allochthonous matter and the relatively low zooplankton grazing.  相似文献   

13.
Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant variability in isotopic distribution was found over the entire length of the Godavari estuary, suggesting multiple sources of organic matter. The mean isotopic ratios (δ13Csed −25.1 ± 0.9, δ13Csus −24.9 ± 1, δ15Nsed 8.0 ± 2 and δ15Nsus 6.5 ± 0.9‰) and elemental concentrations (Csed 0.45 ± 0.2%, Csus 0.9 ± 0.7%, Nsed 0.07 ± 0.05% and Nsus 0.16 ± 0.1%) support a predominantly terrigenous source. Significant enrichment in the isotopic ratios of δ13C from the upper to lower estuary in both suspended (−27.5 and −24.3‰, respectively) and sedimentary (−26.2 and −24.9‰, respectively) phases indicates a decrease in the influence of terrigeneous material toward the mouth of the estuary. A significant positive relationship exists between the δ13C of suspended and sediment, which indicates that these two organic carbon pools are likely coupled in the form of a significant exchange between the two phases. A positive relationship exists between chlorophyll a and suspended organic matter, which may mean that a significant source of organic carbon is the in situ produced phytoplankton. But, applying a simple mixing model to our isotopes, data yielded about 46% as the contribution of the terrestrial source to suspended matter, which may support the excessive heterotrophic activity in the Godavari estuary reported earlier.  相似文献   

14.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

15.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   

16.
The sources and fates of metabolizable organic carbon were examined at three sites on the North Carolina slope positioned offshore of Cape Fear, Cape Lookout and Cape Hatteras. The13C/12C compositions (δ13C) of the solid phase organic matter, and the dissolved inorganic carbon (ΣCO2) produced during its oxidation, suggested that the labile fraction was predominantly marine in origin. The ΣCO2 concentration gradient across the sediment-water interface, and by inference the ΣCO2 flux and production rate, increased northward from Cape Fear to Cape Hatteras. Methane distributions and ΣCO2 δ13C values suggest that the rate of anaerobic diagenesis increased northward as well. The differences in sedimentary biogeochemistry are most likely driven by an along-slope gradient of reactive organic carbon flux to the seabed. This trend in reactive organic carbon flux correlates well with macrofaunal densities previously observed at the three sites. Proximity to the shelf and the transport of particulate material by surface boundary currents may control the deposition of metabolizable material on the Carolina slope.Evidence for methanogenesis was found only on the Cape Hatteras slope. The methane, which was produced at a depth of approximately 1 m in the seabed, was consumed nearly quantitatively in the biologically mixed layer as it diffused upward. Irrigation of the sediments by infauna may have provided the necessary oxidant for the consumption of the methane.  相似文献   

17.
18.
A program of long-term observation of suspended solids (TSS), particulate organic carbon (POC) and cadmium transported into the Gironde estuary (France) by its major tributaries has been carried out between 1990 and 1999. This decade included contrasting hydrologic cycles and appears representative of a much longer period (1959–1999). The Garonne and the Dordogne river systems are the main tributaries of the Gironde estuary and derive their waters from drainage basins with different geological, industrial and agricultural features. To better understand their respective contributions, they have been observed separately and compared. Water and TSS fluxes of the Garonne River show greater temporal variations and discharge is more related to the hydrology of the drainage basin (e.g. wet/dry years, local flood events etc.). As POC and particulate Cd concentrations in suspended matter are much less variable than turbidity, their fluxes are mainly controlled by the TSS transport. A major part of annual fluxes of TSS and associated pollutants may occur within few flood days (depending on various parameters, e.g. intensity, duration, season, etc.), and also the succession of dry and wet years has an important influence on annual fluxes. The presented data allow calculating fluvial inputs into the Gironde as the sum of fluxes transported by its major tributaries, the Garonne and the Dordogne river systems. Mean annual fluxes into the Gironde observed in 1990–1999 are about 34×109 m3 year−1 for river water, 3.24×106 t year−1 for suspended solids (TSS) and 9.88×109 mol year−1 for particulate organic carbon (POC). Generally, these fluxes are dominated by the contributions of the Garonne River. However, in dry years, the mean contribution of the Dordogne river system (including Dronne and Isle rivers) to the POC input into the estuary exceeded that of the Garonne. This reflects significant differences in vegetation and soil due to natural properties and land management of the basins. Mean Cd fluxes into the estuary are about 110×103 mol year−1 of which 19.6×103 mol year−1 are transported in the dissolved and 90.8×103 mol year−1 in the particulate phases, respectively. In 1991 (dry year), the net (dissolved) Cd flux towards the ocean exceeded the gross fluvial input of total Cd, suggesting the release of Cd from an important stock in the maximum turbidity zone (MTZ) or the fluid mud of the Gironde estuary.  相似文献   

19.
The Portuguese margin in front of the Tagus and Sado rivers is characterized by a narrow shelf incised by numerous canyons and by a large mud deposit. The two estuaries that feed this continental margin have distinct impact. The suspended particulate matter concentration values in the mouth of the Tagus are four times higher than in the Sado. During the summer the surface nepheloid layer is always larger than during the winter when it is restricted near the mouth of the estuary. This nepheloid layer may reach 30 km in length extending westward. The bottom nepheloid layer usually shows higher nephelometer values, and has a typical distribution: it is usually diverted southward in the direction of the Lisbon Submarine Canyon. We estimate the amount of suspended matter being discharged annually from the Tagus estuary to be between 0.4 and 1×106 t. The area covered by fine deposits is about 560 km2. Hence the thickness of sediments deposited annually should be between 0.07 and 0.18 cm. The sedimentation rates calculated from the 210Pb excess vary between 0.16 and 2.13 cm y−1 which correspond to the maximum rate. For a layer of 1 cm thick, 81,000 t of particulate organic carbon (POC) should be trapped. That would represent, with a minimum sedimentation rate between 0.07 and 0.18 cm y−1, an entrapment of 6000–15,000 t POC y−1. The trace metals content of box core samples clearly shows the anthropogenic impact in the uppermost level (5 cm thick) in the Tagus estuary and in all the sedimentary deposits (15 cm thick) on the shelf muddy area. Despite the narrowness of the shelf, a significant part of continental fluxes fails to reach the deep ocean.  相似文献   

20.
The spatial distributions of δ13C, δ15N, and n-alkanes were investigated to determine the source and transportation of allochthonous organic matter from the mouth of the Seomjin River to the southern inner shelf break of Korea. Total organic carbon (%) ranged from 0.3% to 1.6% (average = 0.80%, n = 81), and the C/N ratio varied from 2.4 to 12.4 (average = 6.76, n = 81). The δ13C values ranged from ?25.86 to ?20.26‰ (average = ?21.47‰, n = 81), and δ15N values ranged from 4.37‰ to 8.57‰ (average = 6.72‰, n = 81). The contribution of the terrestrial fraction of organic matter to the total ranged from 4.4% to 97.7% (average = 24.4%, n = 81), suggesting higher amounts around the catchment area and lower amounts in the offshore area. The concentration of total n-alkanes (nC25 ? nC35) was higher at the boundary between the outer bay and inner shelf break (BOBIS). Average chain length and the carbon preference index both indicated that major leaf wax n-alkanes accounted for the observed distribution of terrestrial organic matter, and were dominant in the inner shelf break (around BOBIS) and outer shelf break. Based on the spatial distribution of the total n-alkanes and the sum of nC27, nC29, and nC31, the terrestrial organic matter distribution was considered to be controlled by local oceanographic conditions, especially at the center of the BOBIS. In addition to enabling the distribution and source of terrestrial organic matter to be identified, the n-alkanes indicated that minor anthropogenic allochthonous organic materials were superimposed on the total organic materials in the central part of Yeosu Bay and the catchment area. The n-alkane indices revealed weathered petroleum contamination, with contamination levels being relatively low at the present time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号