首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Abu Dom complex is one of a cluster of Younger Granite ring-complexes piercing the Proterozoic gneisses of the Bayuda Desert of Sudan. Intrusive rocks predominate and range from early metaluminous syenites to later peralkaline syenites and granites. They are disposed as ring-dykes, nested intrusions, and cone-sheet swarms. Field evidence and geochemical variation indicate that the peralkaline rocks evolved from a metaluminous syenitic parent magma as a result of high-level fractionation. The suite carries a clear within-plate signature exemplified by marked enrichments in HFS elements such as Zr and Nb.  相似文献   

2.
Anorogenic granites of middle to late Proterozoic age in the Davis Inlet — Flowers Bay area of Labrador are subdivided on the basis of petrology and geochemistry into three coeval suites. Two of these are high-temperature anhydrous hypersolvus granites: a peralkaline aegirine-sodic-calcic to sodic amphibole-bearing suite and a non-alkaline fayalite-pyroxene-bearing suite. The third is a group of non-alkaline subsolvus hornblende-biotite-bearing granites. Associated with the hypersolvus peralkaline suite is a group of genetically related syenites and quartz syenites. The granites cut ca. 3,000 Ma old Archaean gneisses as well as Elsonian layered basic intrusions of the Nain Complex. One of these, a crudely layered mass which ranges in composition from gabbro to diorite and monzonite, appears to be related to the syenites. The peralkaline granites and some of the syenites are extremely enriched in the high field-strength elements such as Y, Zr, Nd, as well as Rb, Ga and Zn, and have low abundances of Ba, Sr and most of the transition elements. In contrast, the non-alkaline hypersolvus and subsolvus granites do not show the same degree of enrichment. Concentration of the highly charged cations in the peralkaline suite is believed to be the result of halogen-rich fluid activity during fractionation of the magma. The sodic evolution trend in the peralkaline suite is reflected mineralogically by the development of aegirine and aegirine-hedenbergite solid solutions, and by a spectacular amphibole compositional range from katophorite through winchite, richterite, riebeckite to arfvedsonite and ferro eckermannite. Accessory phases which are ubiquitous in these rocks include aenigmatite, astrophyllite, fluorite, monazite and zircon. The non-alkaline hypersolvus granites typically contain iron-rich phases such as fayalite, eulite, ferrosilite-hedenbergite, and annite rich biotite. In the subsolvus granites, amphiboles range in composition from edenite through common hornblende to actinolite and also coexist with annite-rich biotite.Whole-rock and mineral isotopic data for the different suites yield isochrons that are within error of ca. 1,260 Ma, but they have variable initial 87Sr/86Sr ratios. The initial 87Sr/86Sr of the syenites and peralkaline granites (0.7076±11) is significantly lower than the initial 87Sr/86Sr of the subsolvus granites (0.7138±22). These isotopic data provide further confirmation of the importance of a late Elsonian alkaline event in Labrador which can be correlated with Gardar igneous activity in south Greenland. The petrogenesis of the peralkaline suite is interpreted to reflect the effects of fractionation of anhydrous phases from mantle derived basic magma which was contaminated during ascent by radiogenic partial melts of crustal derivation. The non-alkaline hypersolvus and subsolvus granites are interpreted as crustal melts which formed under conditions of variable in response to the same thermal event, and which subsequently experienced feldspar fractionation during crystallization.  相似文献   

3.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

4.
Four volcanoes form Terceira, one of the islands of the Azores group; three contain both basaltic and peralkaline and one only peralkaline rocks. A recently active basaltic fissure zone trends NW-SE across the island.The rocks fall into the alkaline olivine basalt suite although some young basalts are of transitional affinity. The geochemistry shows two general basaltic series: 1) undersaturated, found in lavas of the oldest volcano and in some recent fissure zone basalts and hawaiites; 2) saturated, found in the younger basaltic lavas.Since the emergence of Terceira there has been a contemporaneity of basalt and salic peralkaline lavas. The younger rocks show a bimodal composition distribution, the most voluminous compositions being alkali olivine basalt and comendite with negligible volume in the benmoreite-trachyte range. Two processes appear viable for the derivation of voluminous oversaturated peralkaline rocks: 1) partial melting of upper mantle material giving small magma batches of contrasting composition or 2) fractionation from a transitional basaltic parental magma.Now at Department of Geology, Victoria University of Wellington, New Zealand.  相似文献   

5.
The bimodal Malani suite, West of Barmer, Rajasthan is characterized by discontinuous, ring shaped outcrops of Siwana peralkaline granite with minor outcrops of basalt. The peralkaline, within- plate and A-type nature of granite are evident by its chemical characteristics. The granite is characterized by high Na2O+K2O, Fe/Mg, Zr, Nb, Y, Zn; low Al2O3, CaO and Sr and is significantly low in absolute abundance of trace and REE elements compared to type area Siwana granite. The granite is correlated to the “Pan-African” event and its petrogenesis and tectonic significance are discussed.  相似文献   

6.
Field, petrographical and geochemical studies of a group of late Pleistocene, alkaline and mildly peralkaline trachytic and trachyphonolitic lavas from the northern Kenya Rift have been undertaken. A large number of flows were erupted from widely dispersed centres to form an extensive volcanic shield within the floor of the rift. The major element composition of most rocks was substantially modified during crystallisation, but other data show that differentiation within the suite was the result of protracted feldspar fractionation of a trachytic magma with intially very low abundances of residual trace elements.  相似文献   

7.
Data on the major and trace element chemistry of a suite oftwenty pantelleritic pitchstone lavas from the Quaternary Ethiopianvolcano Fantale is presented. This reveals a contrast betweenthe composition of the pre-caldera flows and the more siliceous,less peralkaline post-caldera lavas. Comparison with experimental and theoretical studies suggeststhat nearly all of the major and trace element variation withinthe two suites can be explained by assuming fractional crystallizationof alkali-feldspar, the most abundant phenocryst phase. Fractionationof the mafic phases appears to have been less significant. The trace element data strongly indicate that the lavas allbelong to a single suite. However, it is suggested that themajor element chemistry of the post-caldera flows was modifiedby the loss of volatiles at the time of the formation of thecaldera, an event which coincided with the eruption of a 2 km3welded ash-flow tuff.  相似文献   

8.
The Mount Gharib peralkaline A-type complex (476±2 Ma), located in the Nubian Shield of Egypt, contains sodic-calcic to sodic amphiboles, accessory astrophyllite, zircon, fluorite, apatite, allanite, aenigmatite, elpidite(?) and ilmenite. This “within plate” hypersolvus suite is enriched in large-ion lithophile (LIL) and high field-strength (HFS) elements, and characterized by a fractionated REE pattern (Ce/Yb=49) and a significant negative Eu anomaly. A fine-grained acicular-amphibole-bearing roof facies shows further enrichment in the LIL and HFS elements. The suite was emplaced in a Pan-African granodiorite-adamellite host, which it locally metasomatized. The affected rocks contain hydrothermal albite, end-member arfvedsonite, astrophyllite, and levels of the LIL and HFS elements intermediate between those in the peralkaline granite and the roof facies. Trace element and isotopic modeling of this A-type granite, with its high initial 87Sr/86Sr value (0.7110), documents an active role of the lithosphere in magma generation. Lithospheric extension, expressed by regional dyke-swarms, was caused by cooling, fracturing and relaxation of the thin, newly formed Pan-African crust. Localized partial melting took place in an open system, possibly as a result of an influx of alkali-rich fluid derived from a sublithospheric source. Metasomatic reactions similar to those observed in the metasomatized wallrocks are considered to have played an important role just prior to the onset of anatexis and generation of the A-type melt.  相似文献   

9.
The southern Sinai Peninsula, underlain by the northernmost extension of the Arabian-Nubian Shield, exposes post-collisional calc-alkaline and alkaline granites that represent the youngest phase of late Neoproterozoic igneous activity. We report a petrographic, mineralogical and geochemical investigation of post-collisional plutons of alkaline and, in some cases, peralkaline granite. These granites intrude metamorphosed country rocks as well as syn- and post-collisional calc-alkaline granitoids. The alkaline and peralkaline granites of the southern tip of Sinai divide into three subgroups: syenogranite, alkali feldspar granite and riebeckite granite. The rocks of these subgroups essentially consist of alkali feldspar and quartz with variable amounts of plagioclase and mafic minerals. The syenogranite and alkali feldspar granite contain small amounts of calcic amphibole and biotite, often less than 3%, while the riebeckite granite is distinguished by sodic amphibole (5–10%). These plutons have geochemical signatures typical of post-collisional A-type granites and were most likely emplaced during a transition between orogenic and anorogenic settings. The parental mafic magma may be linked to lithospheric delamination and upwelling of asthenospheric mantle material. Differentiation of the underplated basaltic magma with contributions from the juvenile crust eventually yielded the post-collisional alkaline granites. Petrogenetic modelling of the studied granitic suite shows that pure fractional crystallization cannot quantitatively explain chemical variations with the observed suite, with both major oxides and several trace elements displaying trends opposite to those required by the equilibrium phase assemblage. Instead, we show that compositional variation from syenogranite through alkali feldspar granite to riebeckite granite is dominated by mixing between a low-SiO2 liquid as primitive or more primitive than the lowest-SiO2 syenogranite and an evolved, high-SiO2 liquid that might be a high-degree partial melt of lower crust.  相似文献   

10.
Post-collisional alkaline magmatism (∼610–580 Ma) is widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield (ANS), i.e. the northern part of the Egyptian Eastern Desert and Sinai. Alkaline rocks of G. Tarbush constitute the western limb of the Katharina ring complex (∼593 ± 16 Ma) in southern Sinai. This suite commenced with the extrusion of peralkaline volcanics and quartz syenite subvolcanics intruded by syenogranite and alkali feldspar granite. The mineralogy and geochemistry of these rocks indicate an alkaline/peralkaline within-plate affinity. Quartz syenite is relatively enriched in TiO2, Fe2O3, MgO, CaO, Sr, Ba and depleted in SiO2, Nb, Y, and Rb. The G. Tarbush alkaline suite most likely evolved via fractionation of mainly feldspar and minor mafic phases (hornblende, aegirine) from a common quartz syenite parental magma, which formed via partial melting of middle crustal rocks of ANS juvenile crust. Mantle melts could have provided the heat required for the middle crustal melting. The upper mantle melting was likely promoted by erosional decompression subsequent to lithospheric delamination and crustal uplift during the late-collisional stage of the ANS. Such an explanation could explain the absence or scarce occurrence of mafic and intermediate lithologies in the abundant late- to post-collisional calc-alkaline and alkaline suites in the northern ANS. Moreover, erosion related to crustal uplift during the late-collision stage could account for the lack or infrequent occurrence of older lithologies, i.e. island arc metavolcanics and marginal basin ophiolites, from the northern part of the ANS.  相似文献   

11.
The Topsails igneous terrane of Western Newfoundland contains a diverse suite of igneous rocks, but consists mainly of Silurian alkaline to peralkaline granites and rhyolites. The terrane exhibits evidence for the coexistence of mafic and salic magmas in the form of composite dykes and flows, sinuous, boudined mafic dykes cutting granites and net vein complexes. Field data and major and trace element chemical data suggest that these magmas mixed to produce limited volumes of more or less homogeneous hydrids.Magma mixing, a process which has received recent prominence in petrogenetic models for calc-alkaline volcanic suites, has elicited less attention than restite separation and fractional crystallization as a cause of chemical dispersion in granites. Evidence from the Topsails igneous terrane suggests the possible importance of magma mixing to granite petrogenesis and a major role for transcurrent faulting in the origin and evolution of peralkaline magmas.  相似文献   

12.
Petrochemical studies on acid plutonic (granite, microgranite) and volcanic (rhyolite, trachyte) rocks occurring in the Siner area of the Siwana Ring Complex, Malani Igneous Suite have been carried out. These rocks are characterized by high concentrations of SiO2, Na2O, K2O, Zr, Nb, Y and REE (except Eu) but low in MgO, Fe2O3(t), CaO, Cr, Ni, Sr; indicating their A-type affinity. Field studies in conjunction with the geochemical characteristic indicate that the magmatism in the Siner area is generally represented by peralkaline suite of rocks which are formed due to rift tectonics. It is also suggested that these acidic rocks could have been derived by low degree partial melting of crustal material. Characteristics of certain pathfinder elements such as Rb, Ba, Sr, K, Zr, Nb, REE and the ratios of K/Rb, Zr/Rb, Ba/Rb along with the multi elemental primitive mantle normalized spidergrams suggest that the Siner peralkaline granites and microgranites have the potential for rare metal and rare earth mineralizations.  相似文献   

13.
The Proterozoic Sergipano fold belt is intruded by various Neoproterozoic late-tectonic granitic plutons of contrasting composition, ranging from (1) metaluminous normal-K calc-alkaline and high-K calc-alkaline suites to (2) peralkaline shoshonitic/ultrapotassic suites and (3) a peraiuminous crustal leucocratic complex. Whole-rock trace-element data, however, show an overlapping LILE enrichment, except for the ultrapotassic suite. HFSE distributions range from 24 to 350 ppm, with the highest values belonging to the ultrapotassic suite and the lowest to the suite derived from the crust. High LILE/HFSE ratios of these rocks suggest their subduction-related character, which may be inherited from orogenic cycles older than the Brasiliano. High LILE and medium to high Cr and Ni contents in some facies from these granites suggest a lower-mafic-crust to metasomatized subcontinental-lithospheric-mantle component. The observed LILE content, degree of alkalinity, and REE polarity toward the northern limit of the Sergipano fold belt suggest an increasing crustal thickness in the same direction. Negative εNd for all granites studied suggests a common, recycled origin for them, implying the involvement of old lithospheric mantle in the case of the ultrapotassic suite. Mantle separation ages support this evidence, as the majority of them (even that for a paleosome migmatite) lie between Transamazonian and Cariris Velhos ages; the most juvenile components show values closer to 1.0 Ga. The identified geochemical signature of these rocks suggests that they have undergone a complex, multiple-stage evolution during a collisional event that involved the partial melting of compositionally distinct source rocks of different ages, suggesting that the Sergipano fold belt crustal section is complexely structured into vertical age domains. This study records as well that the Brasiliano orogeny did not accrete depleted mantle material to the continental crust of the Sergipano fold belt.  相似文献   

14.
Two characteristics of peralkaline igneous rocks that are poorly understood are the extreme enrichment in HFSE, notably Zr, Nb, Y and REE, and the occurrence of fluid inclusions dominated by methane and higher hydrocarbons. Although much of the HFSE enrichment can be explained by magmatic processes, the common intense alteration of the parts of the peralkaline intrusions most enriched in these elements suggests that hydrothermal processes also play an important role in HFSE enrichment. Likewise, although the origin of the higher order hydrocarbons that occur as inclusions in these rocks is still debated, there is strong evidence that at least in some cases their formation involved hydrothermal processes. The issues of HFSE enrichment and hydrocarbon formation in peralkaline intrusions are examined using data from the Strange Lake pluton, a small, middle-Proterozoic intrusion of peralkaline granite in northeast Canada. This pluton contains some of the highest concentrations of Zr, REE and Y ever reported in an igneous body, and is characterised by abundant hydrocarbon-dominated fluid inclusions in rocks that have been hydrothermally altered, including those that form a potential HFSE ore zone. We show that HFSE at Strange Lake were partly concentrated to near exploitable levels as a result of their transport in a high salinity magmatic aqueous liquid, and that this fluid coexisted immiscibly with a carbonic phase which reacted with hydrogen and iron oxides generated during the associated hydrothermal alteration to produce hydrocarbons via a Fischer–Tropsch synthesis. As a result, hydrocarbons and HFSE mineralization are intimately associated. We then go on to show that hydrothermal alteration, HFSE mineralisation and hydrocarbons are also spatially associated in other peralkaline complexes, and present a model to explain this association, which we believe may be applicable to any peralkaline intrusion where HFSE enrichment was accompanied by calcium metasomatism, hematisation and hydrothermal fluorite. We also suggest that, even where these criteria are not satisfied, hydrothermally enriched HFSE and hydrocarbons will be intimately associated simply because they are products of the same initial magmatic fluid. Finally, we speculate that the association of HFSE and hydrocarbons may in some cases actually be genetic, if, as seems possible, unmixing or effervescence of a reduced carbonic fluid from the original magmatic fluid caused changes in temperature, pH, fO2 or the activity of volatile ligands sufficient to induce the deposition of HFSE minerals.  相似文献   

15.
The chemical variation observed in a suite of fifteen aphyric peralkaline phonolite dykes of mid-Gardar age from the vicinity of the Grønnedal-Íka alkaline complex in south-west Greenland is discussed. From relationships in the system Na2O-K2O-Al2O3-SiO2 it is argued that the members of the series are related by the fractionation of feldspar approximating to Ab55Or40An5 in composition, along with augite and lesser amounts of other ferromagnesian minerals. The bearing of these rocks on phase equilibria in the analogous natural system is discussed, and consideration is given to the possible origins of the initial peralkaline phonolite magma.  相似文献   

16.
The Pine Canyon caldera is a small (6–7 km diameter) ash-flow caldera that erupted peralkaline quartz trachyte, rhyolite, and high-silica rhyolite lavas and ash-flow tuffs about 33–32 Ma. The Pine Canyon caldera is located in Big Bend National Park, Texas, USA, in the southern part of the Trans-Pecos Magmatic Province (TPMP). The eruptive products of the Pine Canyon caldera are assigned to the South Rim Formation, which represents the silicic end member of a bimodal suite (with a “Daly Gap” between 57 and 62 wt.% SiO2); the mafic end member consists primarily of alkali basalt to mugearite lavas of the 34–30 Ma Bee Mountain Basalt. Approximately 60–70% crystallization of plagioclase, clinopyroxene, olivine, magnetite, and apatite from alkali basalt coupled with assimilation of shale wall rock (Ma/Mc = 0.3–0.4) produced the quartz trachyte magma. Variation within the quartz trachyte–rhyolite suite was the result of 70% fractional crystallization of an assemblage dominated by alkali feldspar with subordinate clinopyroxene, fayalite, ilmenite, and apatite. High-silica rhyolite is not cogenetic with the quartz trachyte–rhyolite suite, and can be best explained as the result of  5% partial melting of a mafic granulite in the deep crust under the fluxing influence of fluorine. Variation within the high-silica rhyolite is most likely due to fractional crystallization of alkali feldspar, quartz, magnetite, biotite, and monazite. Lavas and tuffs of the South Rim Formation form A-type rhyolite suites, and are broadly similar to rock series described in anorogenic settings both in terms of petrology and petrogenesis. The Pine Canyon caldera is interpreted to have developed in a post-orogenic tectonic setting, or an early stage of continental rifting, and represents the earliest evidence for continental extension in the TPMP.  相似文献   

17.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

18.
Petrogenetic modeling of the Recent lava succession of Santa Barbara and Pico Alto volcanoes and associated basaltic lavas indicates that there are two discrete lava series present, one erupted from the axial rift linking the two central volcanoes and one associated with monogenetic cones scattered around the flanks of Santa Barbara. The felsic lavas of both volcanoes are peralkaline and appear to be derived from associated basalts by fractional crystallization of an assemblage including essential amphibole. Trace element abundances in the felsic lavas, particularly those of Sr and REE, cannot be reconciled with an origin through partial melting of basaltic material at the base of the volcanic pile. The difference between the comenditic and pantelleritic differentiation trends of Santa Barbara and Pico Alto is attributed primarily to FO2 control of the crystallizing assemblage, probably related to thermal dissociation of magmatic water in the Santa Barbara magma chamber. This effect may be augmented by minor differences in parent basaltic compositions, the Pico Alto pantellerites being derived from the rift basalts whereas the Santa Barbara comendites are derived from the off-rift basalts. A compositional gap between 54 and 64% silica content in the lavas is not present if the suite is extended to include co-magmatic hypabyssal xenoliths, leading to the inference that the gap in this and other bimodal suites results solely from a relative inability of magma of intermediate composition to erupt.  相似文献   

19.
The bimodal association of the Noen and Tost ranges is ascribed to the Gobi-Tien Shan rift zone and was formed 318 Ma ago at the continental margin of the North Asian paleocontinent. It is made up of volcanic series of alternating basalts and peralkaline rhyolites with subordinate trachytes, dike belts, and massifs of peralkaline granites. The association also includes a coeval massif of biotite granites. Based on Al2O3 and FeOtot contents, the peralkaline rhyolites are subdivided into comendites (FeOtot 1.5–5.7 wt %, Al2O3 10.5–15.4 wt %) and pantellerites (FeOtot 5.2–7.5 wt %, Al2O3 9.1–10.2 wt %). The peralkaline salic rocks of the bimodal association were formed by the crystallization differentiation of rift basaltic magmas combined with crustal assimilation. The comendites, pantellerites, and peralkaline granites inherited negative Nb and Ta and positive K and Pb anomalies from basalts. They are also similar to basalts in Nd isotope composition (?Nd(T) = 5.5–7.4) and have nearly mantle oxygen isotope composition (δ18O = 5.9–7.3‰). The most differentiated and least contaminated rocks of the bimodal series of the Noen and Tost ranges are pantellerites. Calculations indicate that the fraction of the residual pantellerite melt was 8% or less of the parental basaltic magma. The comendites were derived from peralkaline salic melts by the assimilation of anatectic crustal melts compositionally similar to biotite granites. The formation of the latter within the Noen and Tost ranges is explained by the specific geodynamic position of the Gobi-Tien Shan rift zone, which was formed near a paleocontinental margin that evolved in an active margin regime shortly before the beginning of rifting.  相似文献   

20.
Radiogenic isotope data (initial Nd, Pb) and elemental concentrations for the Mooselookmeguntic igneous complex, a suite of mainly granitic intrusions in New Hampshire and western Maine, are used to evaluate petrogenesis and crustal variations across a mid-Paleozoic suture zone. The complex comprises an areally subordinate monzodiorite suite [377±2 Ma; εNd (at 370 Ma)=−2.7 to −0.7; initial 207Pb/204Pb=15.56–15.58] and an areally dominant granite [370±2 Ma; εNd (at 370 Ma)=−7.0 to −0.6; initial 207Pb/204Pb=15.55–15.63]. The granite contains meter-scale enclaves of monzodiorite, petrographically similar to but older than that of the rest of the complex [389±2 Ma; εNd (at 370 Ma)=−2.6 to +0.3; initial 207Pb/204Pb 15.58, with one exception]. Other granite complexes in western Maine and New Hampshire are 30 Ma older than the Mooselookmeguntic igneous complex granite, but possess similar isotopic signatures.

Derivation of the monzodioritic rocks of the Mooselookmeguntic igneous complex most likely occurred by melting of Bronson Hill belt crust of mafic to intermediate composition. The Mooselookmeguntic igneous complex granites show limited correlation of isotopic variations with elemental concentrations, precluding any significant presence of mafic source components. Given overlap of initial Nd and Pb isotopic compositions with data for Central Maine belt metasedimentary rocks, the isotopic heterogeneity of the granites may have been produced by melting of rocks in this crustal package or through a mixture of metasedimentary rocks with magmas derived from Bronson Hill belt crust.

New data from other granites in western Maine include Pb isotope data for the Phillips pluton, which permit a previous interpretation that leucogranites were derived from melting heterogeneous metasedimentary rocks of the Central Maine belt, but suggest that granodiorites were extracted from sources more similar to Bronson Hill belt crust. Data for the Redington pluton are best satisfied by generation from sources in either the Bronson Hill belt or Laurentian basement. Based on these data, we infer that Bronson Hill belt crust was more extensive beneath the Central Maine belt than previously recognized and that mafic melts from the mantle were not important to genesis of Devonian granite magma.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号