首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract On the basis of a detailed cartographic survey carried out by Side Scan Sonar and a towed underwater video camera during 2005, and from a series of historical maps (1959, 1980, 1990), an extensive regression of Posidonia oceanica (L.) Delile beds was evidenced for a vast area of the central Tyrrhenian Sea (Latium coast, Italy). The total loss of P. oceanica surface was assessed through GIS estimate. In 1959, the Posidonia beds extended over 7290 ha, while in the 2005 survey they had regressed to 2899 ha, a loss of about 60% of their coverage. Also the seagrass lower limit showed a general depth decrease in time. Total seagrass coverage loss and lower limit regression were not uniform along the whole investigated areas and three main sub-areas have been identified with different degrees of regression somehow related with coastal potential human-mediated impacts. From different coverage estimates of the present survey and of the previous maps, minimum sampling areas were calculated through bootstrapping simulation routines from small sampling areas (Landscape Units) to reach the nearest estimate of the observed condition in the different periods.  相似文献   

2.
海草床是珍贵的“海底草原”,具有十分重要的生态服务功能。上世纪90年代,烟台曾分布有4种海草,尚不明确海草的分布现状。本研究结合了现场调查、声呐探测等手段,查清了烟台市莱州市至莱山区沿海海草的分布现状,发现了一处位于烟台市套子湾的面积为51.90 ha的鳗草-日本鳗草混合草床,并对鳗草、日本鳗草的生态特征进行了调查。调查发现烟台现存海草仅有2种,部分草床严重退化,亟需对现存海草进行保护与监测,以遏制海草的退化速度。  相似文献   

3.
鳗草(ZosteramarinaL.)广布于北半球温带浅海海域,其形成的鳗草床具有重要的生态价值。近些年来,我国黄渤海海域鳗草退化严重,较大面积、连续分布的海草床已经非常少见。在渤海兴城-觉华岛海域发现较大面积的海草床,可以作为渤海沿海海草床的典型代表。基于此,2018年5月、9月、11月和2019年3月对该海草床进行了初步调查,探究了渤海兴城-觉华岛海草床鳗草种群补充等生态特征,分析了海草床生境的主要威胁,并提出了对海草床进行有效保护和科学管理的相关建议。结果表明:渤海兴城-觉华岛海草床总面积为791.61ha,海草种类为鳗草和日本鳗草(Z.japonica),以鳗草为优势种,日本鳗草极少且呈斑块状分布;鳗草生物量在2018年5月达到最大值(1241.22—1632.64g/m2);鳗草叶片碳、氮、磷元素含量分别为35.35%—36.57%、1.89%—3.35%、0.14%—0.48%;鳗草海草床以无性繁殖为主要补充方式,有性繁殖补充比例平均仅为1.92%,明显低于国内其他鳗草草床,具有鲜明的独特性;该海草床主要受围填海、捕蛤、围网捕鱼等人类活动的严重影响,并致使海草床边缘区域呈现斑块化趋势。建议对这片珍贵的海草床加以保护和修复。  相似文献   

4.
海草床是三大典型的近海海洋生态系统之一,具有极高的生态服务功能。然而,截至2015年我国近海海草资源分布现状尚不明晰,严重制约了我国海草床保护与修复工作的开展。2015~2021年,笔者通过实地调查,借助船只走航、声呐探测、遥感等技术手段,重点对我国近海海草资源的分布面积、种类及主要威胁进行了全面普查,并据此提出我国海草床管理与可持续利用对策。结果表明,我国近海海域海草床面积共为26 495.69hm2,可划分为:温带海域海草分布区和热带-亚热带海域海草分布区;我国现有海草4科9属16种。其中,温带海域海草床面积为17 095.01 hm2,主要分布在辽宁、河北、天津和山东沿海,分布有2科3属5种,以鳗草(Zosteramarina)和日本鳗草(Z.japonica)为优势种,其中唐山乐亭-曹妃甸海草床面积达9 025.56 hm2,是我国面积最大的海草床;热带-亚热带海域海草床面积为9 400.68 hm2,主要分布在福建、广东、广西和海南沿海,分布有4科8属12种,以泰来草(Thalassia hemprichii)、海菖蒲(Enhalus acoroides...  相似文献   

5.
海草场的生态功能   总被引:5,自引:0,他引:5  
海草场作为特殊的海洋生态系统之一,尽管其面积占海洋总面积的比例很小,但其具有极高的初级生产力,在地球系统碳循环中起着不可忽视的作用。海草本身还可以作为其他附着生物的附着基,进一步提高了海草场的初级生产力,并为许多海洋动物提供了适宜的食物。海草场的存在,改变了海草场内的流体动力过程,加速了悬浮颗粒的沉降,对稳定海底底质和净化水质有着积极的作用,因此被称为"生态系统工程师"。海草本身可以作为一些海洋动物的食物,同时其复杂的地下和地上结构还为一些海洋动物提供了庇护和栖息场所。而海草植物体的大部分,将最终被微生物分解利用,所产生的营养盐可以满足其它初级生产者生长所需。本文通过总结世界范围内海草场生态学研究成果,旨在阐述海草场生态系统的特征及功能,以提高人们对海草场生态功能的认识,唤起人们对海草场的重视与保护意识。  相似文献   

6.
Heavy nutrient loads in coastal waters often lead to excessive growth of microalgal and macroalgal epiphytes on seagrass leaves, with varying effects on the underlying seagrasses. This study evaluates the photosynthetic performance, epiphytic biomass and tissue nutrient content of two tropical seagrasses, Cymodocea serrulata and Thalassia hemprichii, in two intertidal areas along the Dar es Salaam coast in the Indian Ocean, a nutrient-rich region at Ocean Road (near the city centre), and a nutrient-poor region at Mjimwema (south of the city centre). Epiphyte biomass was significantly higher at the nutrient-rich site, and epiphytes were associated with reduced photosynthetic performance in both seagrass species at both sites. Likewise, nitrogen and phosphorus tissue content was higher in both species at the nutrient-rich site than at the nutrient-poor site. Epiphytic species composition on the seagrass leaves varied between seagrass species and between sites. Cymodocea serrulata had a higher number of epiphytic species at Mjimwema than at Ocean Road, whereas Thalassia hemprichii had more epiphytic species at Ocean Road than at Mjimwema. Seagrass photosynthetic performance, epiphytic biomass and nutrient content of the seagrasses were shown to be affected by nutrient concentration in the water column. Thus, for the future monitoring of the seagrass meadow, we recommend the use of combined measures such as seagrass performance, epiphytic biomass, nutrient contents and nutrient concentration levels in the water column.  相似文献   

7.
An extensive Posidonia oceanica meadow was partially destroyed by excavation, resulting in areas of seagrass habitat of equal complexity (shoot density) but different heterogeneity (degree of fragmentation). The fish assemblages associated with differently fragmented beds were compared from a landscape perspective. Differences in the fish assemblages were detected, with several species showing different patterns: (1) species that increased their abundance along with the degree of bed fragmentation, (2) species that were more abundant in fragmented beds, but did not show differences between more or less fragmented beds, and (3) species that were mostly abundant in large seagrass patches or in the continuous meadow. The fish assemblages were also affected by depth, but further research is needed to determine properly this effect. Some ecological mechanisms are suggested to operate in the interaction between P. oceanica and the held fish assemblage.  相似文献   

8.
《Oceanologica Acta》2002,25(6):297-302
Aerial photographs and in situ data of the Urbinu Lagoon (one of the largest and deepest ponds in Corsica, Mediterranean Sea) permit the establishment of a cartography of its aquatic benthic assemblages and types of sea-beds. It was possible to distinguish in the photographs submerged structures such as: sand, pebbles, mud and seagrass meadows. Seagrass beds were the predominant vegetation type in this lagoon (comprising 14–29% of the total area depending on the year studied), and their distribution was incorporated into a geographical information database, and then compared with historical data. Temporal and spatial change in seagrass meadows was assessed between 1990 and 1997. Change in total extent was evaluated through a map to map comparison of data interpreted from image processing using colored aerial photographs (1990, 1994 and 1997). The overall net change was a 12% decrease between 1990 and 1994 and a 16% increase between 1994 and 1997. These observations imply that regressions are not irreversible over the past 7 years, and show that seagrass meadows in this area have been stable despite environmental perturbations, since the lost zones were recolonized.  相似文献   

9.
The surface areas of 12 subtidal seagrass Zostera muelleri beds at the islands and adjacent mainland shores of the eastern Bay of Islands (35° 12′ S, 174° 10′ E), New Zealand were estimated from aerial images. It appears that little subtidal seagrass existed until after the early-1950s, so significant beds here may be a relatively recent biome. Possible explanations for recent emergence of subtidal seagrass include that debilitating periods of turbid water and pulses of sedimentation associated with the land clearances of the late 1800s had worked through the marine ecosystem. An overall peak in seagrass-cover in the 1960s to 1980s was followed by declines in several beds in the 1990s to 2000s, with recovery since. The temporal presence of seagrass was well-correlated among the three mainland beds, and moderately well among the south-facing beds on the islands, consistent with mechanisms driving seagrass establishment and persistence operating at reasonably broad scales.  相似文献   

10.
An ecosystem model was used to evaluate the effects of reclaiming seagrass beds and creating artificial shallows with seagrass beds to mitigate the effects of the reclamation. The applied model can simulate the pelagic and benthic ecosystems including seagrass beds and tidal flats. The objectives of this study were (a) to investigate the likelihood of cultivating and maintaining seagrass beds in artificial shallows (Part 1), and (b) to understand the effects of the reclamation of seagrass beds and the creation of artificial shallows on the water quality in the estuary (Part 2). In Part 1, first, the nutrient turnover rates due to both biochemical and physical processes in the natural seagrass beds where reclamation is proposed were analyzed. Biological processes rather than physical processes were the most significant driving forces of nutrient cycles in seagrass beds. Second, the effects of filter feeding benthic fauna (suspension feeders) in the seagrass beds were analyzed. The scenario with suspension feeders resulted in higher transparency of the water column (8.7% decrease in the light attenuation coefficient) and an increase in nutrient supply (24.9% increase in NH4-N in the water column) contributing to the high specific growth rate of seagrass. Third, the specific growth rate of seagrass on the proposed artificial shallows was measured. The value on the artificial shallows set at a depth of datum line minus 0.8 m (D.L. − 0.8 m) was approximately the same as that of the natural seagrass beds. In Part 2, first, water quality in the estuary was compared among the scenarios with/without natural seagrass beds and artificial shallows. Then, the defined values of the water purification capability of (a) artificial shallows with/without seagrass beds, and (b) natural seagrass beds per unit area were evaluated. The reclamation of the natural seagrass beds resulted in a decrease of the removal of phytoplankton and detritus from the pelagic system (i.e. resulted in a loss in the purification rate). In contrast, the creation of artificial shallows resulted in an increase of the removal of phytoplankton and detritus from the pelagic system (i.e. resulted in a gain in the purification rate). Based on an annual average, approximately twice as much phytoplankton was removed from the artificial shallows at the depth D.L. − 0.8 m, than at the depth, D.L. − 1.5 m, and the artificial shallows with seagrass beds removed pelagic DIN and DIP at a rate 120% higher than that without seagrass beds.  相似文献   

11.
Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ13C signatures between fish (−16.1 ± 2.1‰), seagrasses (−15.1 ± 3.0‰), seagrass epiphytes (−13.6 ± 3.3‰), and macroalgae (−20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ13C signatures (−16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (−14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.  相似文献   

12.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

13.
为探究华南沿海海草床大型底栖动物群落特征、地区差异及其与海草群落间的关系,2020年在华南沿海12个海草床区域开展了大型底栖动物调查。共布设33个调查断面99个站位,在主要群落参数的基础上,运用相关性分析和聚类分析、nMDS排序、相似性百分比分析等群落生态学统计方法分析了底栖动物群落特征及其与海草群落的关系。共鉴定出大型底栖动物9大门类199种,其中,软体动物种类最多,占总种类数的39.7%。各区域底栖动物的平均栖息密度为155.7 ind/m2,青葛—龙湾(琼海)的平均栖息密度最低,珍珠湾(防城港)的平均栖息密度最高;平均生物量为118.36 g/m2,最低值出现在义丰溪(汕头),最高值出现在珍珠湾。各区域底栖动物的优势种以潮间带泥沙滩常见腹足类、双壳类和多毛类为主;底栖动物的种类多样性指数(H′)平均值为1.12,最低值出现在唐家湾(珠海),最高值出现在铁山港(北海);各调查区域底栖动物主要群落参数大致呈现“北部湾>海南沿岸>珠江口及粤东”的规律。华南沿海海草床分布区大型底栖动物群落的区域性特征较为明显,地理位置相近的海草床底...  相似文献   

14.
Two different Cymodocea nodosa (Ucria) Ascherson beds growing in mining-contaminated sediments were compared with two reference beds in the Mar Menor coastal lagoon. The accumulation of Zn, Pb and Cd in different fractions of the plant, the sediment parameters that regulate the availability of metals, the seabed structure and dynamics of each seagrass bed and its associated macroinvertebrate community were studied. C. nodosa accumulates metals from the sediments and reflects their bioavailability for this seagrass. At each station, the metal content of the rhizomes was lower than that of leaves and roots. The concentration of acid-volatile sulfides does not seem to influence the availability of metals to the seagrass, possibly due to oxygen transport to underground tissues. The highest metal concentration in all the contaminated stations was found in the leaf-biofilm, due to the formation of complexes between metals and the extracellular polymeric substances that form the biofilm. All the seagrass beds were seen to be undergoing expansion, those growing in contaminated sediments accumulating great quantities of metals and showing highest photosynthetic leaf surface area and highest leaf biomass. However, these structural parameters were not seen to be responsible for the differences in the faunal composition observed between contaminated and reference beds. Moreover, the multivariate analysis identified the metal content of leaves, biofilm and sediments as important variables that may be responsible for these differences in faunal composition. In this study we have demonstrated that both the seagrass C. nodosa and the biofilm on the plant leaves may be used as environmental tools in the Mar Menor lagoon. The former is an useful indicator of sediment contamination, whereas the latter seems to be a good sentinel of water quality.  相似文献   

15.
文章以海南岛新村湾、黎安港和潭门港海草床为研究区域, 选取褐篮子鱼(Siganus fuscessens)、点斑篮子鱼(Siganus guttatus)、四带牙鯻(Pelates quadrilineatus)和细鳞鯻(Terapon jarbua) 4种代表性鱼类为研究对象, 分析其体长与体质量的关系, 并探讨4种鱼类对海草资源量变化的响应。结果表明, 除栖息于潭门港海草床的4种鱼为负异速生长, 其他区域海草床的鱼类均为正异速或等速生长; 4种鱼的体质量生长速率(即异速生长因子b)和肥满度呈现黎安港>新村湾>潭门港的趋势, 并与3个海草床的海草覆盖率、密度和生物量的变化趋势一致; 推测海草资源量下降可能增加鱼类的被捕食压力和减少食物来源, 从而导致生活于海草床的代表性鱼类生长速率下降。  相似文献   

16.
Understanding the connectivity of fish among different typical habitats is important for conducting ecosystembased management, particularly when designing marine protected areas(MPA) or setting MPA networks. To clarify of connectivity among mangrove, seagrass beds, and coral reef habitats in Wenchang, Hainan Province,China, the fish community structure was studied in wet and dry seasons of 2018. Gill nets were placed across the three habitat types, and the number of species, individuals, and body size of individual fish were recorded. In total, 3 815 individuals belonging to 154 species of 57 families were collected. The highest number of individuals and species was documented in mangroves(117 species, 2 623 individuals), followed by coral reefs(61 species,438 individuals) and seagrass beds(46 species, 754 individuals). The similarity tests revealed highly significant differences among the three habitats. Approximately 23.4% species used two habitats and 11.0% species used three habitats. A significant difference(p0.05) in habitat use among eight species(Mugil cephalus, Gerres oblongus, Siganus fuscescens, Terapon jarbua, Sillago maculata, Upeneus tragula, Lutjanus russellii, and Monacanthus chinensis) was detected, with a clear ontogenetic shift in habitat use from mangrove or seagrass beds to coral reefs. The similarity indices suggested that fish assemblages can be divided into three large groups namely coral, seagrass, and mangrove habitat types. This study demonstrated that connectivity exists between mangrove–seagrass–coral reef continuum in Wenchang area; therefore, we recommend that fish connectivity should be considered when designing MPAs or MPA network where possible.  相似文献   

17.
近些年来随着生境的破坏其分布面积急遽下降,较大面积连续分布的海草床已经非常少见。本研究首次将声呐探测技术应用到海草床时空分布特征的相关研究中,在河北唐山乐亭-曹妃甸沿海发现目前中国面积最大的鳗草(Zostera marina)海草床,海草床面积高达29.17 km~2,绘制了鳗草分布图和水深分布图,并对鳗草生物量和茎枝高度等基本生物学指标进行了调查。该发现极大丰富了中国海草数据库,并为鳗草的深入研究及保护提供了得天独厚的实验基地,也为周边海洋牧场的构建打下良好的基础。  相似文献   

18.
海草是一类生活在近海区域的高等被子植物,初级生产力高,是全球重要的碳汇之一,具有净化水质、消浪固滩,以及为珍稀濒危海洋生物提供栖息地和保护地的功能。无节制的人类活动和频发的极端气象灾害导致近岸海洋污染加剧、海洋生态系统退化和海草床大面积消失。本文以相关海草床修复生态学基础理论为出发点,在自然因素和人为因素两个方面归纳了海草修复需要考虑的因素,梳理了国内外海草修复实践和技术理论方法,提出了利用营养物质、植物激素和物种共生关系等人为促进海草床生长的技术方法,并从法律角度、技术体系、保护体系和科普宣传等方面提出了促进我国海草床修复的建议,以期为我国海草床保护与修复工作提供理论基础和技术参考。  相似文献   

19.
In the northern Wadden Sea, the extent of intertidal seagrass beds, their plant biomass and shoot density highly depends on local current regimes. This study deals with the role of intertidal Zostera noltii beds as nursery for mobile epibenthic macrofauna and the impact of seagrass bed characteristics on their abundance and distribution patterns. According to their exposure to the main tidal gullies, sampling sites were separated into exposed, semi-exposed and sheltered. Dominant species of crustaceans and demersal fish were studied in respect of their abundances within seagrass beds and adjacent unvegetated areas. Quantitative sampling was performed at day and night high tide using a portable drop trap. In general, species composition varied little between seagrass beds and bare sand. However, the presence of vegetation had a quantitative effect increasing individual numbers of common epifaunal species. Abundances of 0-group shore crabs (Carcinus maenas), common gobies (Pomatoschistus microps) and brown shrimps (Crangon crangon) were highest within sheltered seagrass beds. With decreasing plant density habitat preference of epibenthos changed on species level. By regulating the habitat complexity the currents regime is profoundly influencing the nursery function of intertidal seagrass beds in the Wadden Sea.  相似文献   

20.
The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American Tropical seagrasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号