共查询到20条相似文献,搜索用时 15 毫秒
1.
Jon K. Hillier S. F. Green N. McBride J. P. Schwanethal F. Postberg R. Srama S. Kempf G. Moragas-Klostermeyer J. A. M. McDonnell E. Grün 《Monthly notices of the Royal Astronomical Society》2007,377(4):1588-1596
We present the first in situ direct measurement of the composition of particles in Saturn's rings. The Cassini cosmic dust analyser (CDA) measured the mass spectra of nearly 300 impacting dust particles during the 2004 October E ring crossing. An initial interpretation of the data shows that the particles are predominantly water ice, with minor contributions from possible combinations of silicates, carbon dioxide, ammonia, molecular nitrogen, hydrocarbons and perhaps carbon monoxide. This places constraints on both the composition of Enceladus, the main source of the E ring, as well as the grain formation mechanisms. 相似文献
2.
3.
P. Nurmi M. J. Valtonen J. Q. Zheng H. Rickman 《Monthly notices of the Royal Astronomical Society》2002,333(4):835-846
We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a <5000 au . The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region. 相似文献
4.
Cassini UVIS star occultations by the F ring detect 13 events ranging from 27 m to 9 km in width. We interpret these structures as likely temporary aggregations of multiple smaller objects, which result from the balance between fragmentation and accretion processes. One of these features was simultaneously observed by VIMS. There is evidence that this feature is elongated in azimuth. Some features show sharp edges. At least one F ring object is opaque and may be a “moonlet.” This possible moonlet provides evidence for larger objects embedded in Saturn's F ring, which were predicted as the sources of the F ring material by Cuzzi and Burns [Cuzzi, J.N., Burns, J.A., 1988. Icarus 74, 284-324], and as an outcome of tidally modified accretion by Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171]. We see too few events to confirm the bi-modal distribution which Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] predict. These F ring structures and other youthful features detected by Cassini may result from ongoing destruction of small parent bodies in the rings and subsequent aggregation of the fragments. If so, the temporary aggregates are 10 times more abundant than the solid objects. If recycling by re-accretion is significant, the rings could be quite ancient, and likely to persist far into the future. 相似文献
5.
P. Nurmi 《Monthly notices of the Royal Astronomical Society》2001,323(4):911-922
Two long-term simulation methods for cometary orbits, a Monte Carlo method and a direct integration method, are compared with each other. The comparison is done in seven inclination and perihelion distance intervals, and shows differences in dynamical lifetime and capture probabilities for the following main reasons. We use a finite energy step approximation in the Monte Carlo method and the method considers only close approaches with the planets. The differences can be taken into account statistically and it is possible to calculate the correction factors for the capture probability and dynamical lifetime in the Monte Carlo method. Both corrections depend on the inclination and on the value of the minimum energy step. The capture probabilities of the short-period comets originating in the Oort Cloud are calculated by the corrected Monte Carlo method and compared with published results. 相似文献
6.
We study thermal instability in a magnetized and partially ionized plasma with charged dust particles. Our linear analysis shows that the growth rate of the unstable modes in the presence of dust particles strongly depends on the ratio of the cooling rate and the modified dust-cyclotron frequency. If the cooling rate is less than the modified dust-cyclotron frequency, then the growth rate of the condensation modes does not modify due to the existence of the charged dust particles. But, when the cooling rate is greater than (or comparable to) the modified dust-cyclotron frequency, the growth rate of unstable modes increases because of the dust particles. Also, the wavenumber of the perturbations corresponding to the maximum growth rate shifts to the smaller values (larger wavelengths) as the cooling rate becomes larger than the modified dust-cyclotron frequency. We show that the growth rate of the condensation modes increases with the electrical charge of the dust particles. 相似文献
7.
N. W. Harris & M. E. Bailey 《Monthly notices of the Royal Astronomical Society》1998,297(4):1227-1236
We present results from long-term numerical integrations of hypothetical Jupiter-family comets (JFCs) over time-scales in excess of the estimated cometary active lifetime. During inactive periods these bodies could be considered as 'cometary' near-Earth objects (NEOs) or 'cometary asteroids'. The contribution of cometary asteroids to the NEO population has important implications not only for understanding the origin of inner Solar system bodies but also for a correct assessment of the impact hazard presented to the Earth by small bodies throughout the Solar system. We investigate the transfer probabilities on to 'decoupled' subJovian orbits by both gravitational and non-gravitational mechanisms, and estimate the overall inactive cometary contribution to the NEO population. Considering gravitational mechanisms alone, more than 90 per cent of decoupled NEOs are likely to have their origin in the main asteroid belt. When non-gravitational forces are included, in a simple model, the rate of production of decoupled NEOs from JFC orbits becomes comparable to the estimated injection rate of fragments from the main belt. The Jupiter-family (non-decoupled) cometary asteroid population is estimated to be of the order of a few hundred to a few thousand bodies, depending on the assumed cometary active lifetime and the adopted source region. 相似文献
8.
9.
10.
11.
H. Rickman G. B. Valsecchi Cl. Froeschlé 《Monthly notices of the Royal Astronomical Society》2001,325(4):1303-1311
We investigate the first stage of the dynamical evolution of Oort cloud comets entering the planetary region for the first time. To this purpose, we integrate numerically the motions of a large number of fictitious comets pertaining to two samples, both with perihelion distances up to 5.7 au and random inclinations; the first sample is composed of comets whose orbits have at least one node close to 5.2 au, while the second is not subject to this constraint. We examine the orbits when the comets come to aphelion after their first perihelion passage within the planetary region, and find that there is a clear statistical dependence of the energy perturbations on the Tisserand parameter. There appear to be two main processes, of comparable importance, governing the shortening of semimajor axes to values of less than 1000 au, i.e. planetary close encounters, especially with Jupiter, and indirect perturbations due to the shifting of the motion from barycentric to heliocentric and back; the former process mostly affects comets crossing the ecliptic at about 5.2 au, or on low-inclination orbits, while the latter mostly affects comets of small perihelion distance. This last result may help to understand the relative paucity of Halley-type comets with perihelion distances larger than about 1.5 au. 相似文献
12.
J. L. Ortiz F. Moreno A. Molina P. Santos Sanz P. J. Gutiérrez 《Monthly notices of the Royal Astronomical Society》2007,379(3):1222-1226
Eris, an object larger than Pluto, is known to reside in the transneptunian region further away than Pluto. One can wonder whether its semimajor orbital axis fits in a generalized Titius–Bode law, in the same way as Pluto does. We performed a new least-squares fit to a generalized Titius–Bode law including Eris and found that not only does Eris fit in the trend, but also the correlation coefficient improves. In addition, there is a remarkable symmetry of the location of the planetary formation regions with respect to Jupiter when the natural logarithm of the heliocentric distance is used as the metric. The issue of whether the observed patterns have some physical meaning or are due to mere chance is addressed using a Monte Carlo approach identical to that of Lynch. Although the probability of chance occurrence is highly dependent on the way in which the random configurations of synthetic planetary systems are selected, we find that in all reasonable scenarios of random planetary systems the probability of chance occurrence of the observed patterns is small (below 1 per cent in most cases). If the trend were used as a prediction tool, one might expect another planet or dwarf planet or a swarm of bodies with semimajor orbital axis of 120 ± 20 au. Simple calculations show that the protoplanetary nebula most likely had enough mass to allow the accretion of at least a dwarf planet at that distance. We also found that if the surface density of the nebula decayed with heliocentric distance ( r ) as a power of −2, the regular spacing in ln r in the Solar system could be a natural consequence of the existence of a threshold mass for planetary formation. 相似文献
13.
14.
15.
Shin Yabushita 《Monthly notices of the Royal Astronomical Society》2002,334(2):369-373
An analysis is made of the periodicity hypothesis of the ages of large craters, based on the compilation by Grieve with the addition of recently identified craters. A method earlier proposed by Broadbent is used to derive a period, and the significance of the derived period is tested by a Monte Carlo experiment. In accordance with the result of Stothers, the ages of large craters ( D >30 km) are shown to exhibit a period close to 37.5 Myr. Monte Carlo experiments show, however, that the derived period is far from being statistically significant. A subset of crater data earlier adopted by Napier for the purpose of similar investigation is also tested, and it is shown that they also exhibit a similar period at an almost identical level of confidence. A brief discussion is made of the relation between the derived period and that associated with faunal mass extinctions. 相似文献
16.
R. Brasser 《Monthly notices of the Royal Astronomical Society》2001,324(4):1109-1116
In this paper the effect of the Galactic tidal field on a Sun–comet pair will be considered when the comet is situated in the Oort cloud and planetary perturbations can be neglected. First, two averaged models were created, one of which can be solved analytically in terms of Jacobi elliptic functions. In the latter system, switching between libration and circulation of the argument of perihelion is prohibited. The non-averaged equations of motion are integrated numerically in order to determine the regions of the ( e , i ) phase space in which chaotic orbits can be found, and an effort is made to explain why the chaotic orbits manifest in these regions only. It is evident that for moderate values of semimajor axis, a ∼50 000 au , chaotic orbits are found for ( e <0.15 , 40°≤ i ≤140°) as determined by integrating the evolution of the comet over a period of 104 orbits. These regions of chaos increase in size with increasing semimajor axis. The typical e-folding times for these orbits range from around 600 Myr to 1 Gyr and thus are of little practical interest, as the time-scales for chaos arising from passing stars are much shorter. As a result of Galactic rotation, the chaotic regions in ( e , i ) phase space are not symmetric for prograde and retrograde orbits. 相似文献
17.
18.
19.
Douglas C. Heggie Michele Trenti Piet Hut 《Monthly notices of the Royal Astronomical Society》2006,368(2):677-689
In order to interpret the results of complex realistic star cluster simulations, which rely on many simplifying approximations and assumptions, it is essential to study the behaviour of even more idealized models, which can highlight the essential physical effects and are amenable to more exact methods. With this aim, we present the results of N -body calculations of the evolution of equal-mass models, starting with primordial binary fractions of 0–100 per cent, with values of N ranging from 256 to 16 384. This allows us to extrapolate the main features of the evolution to systems comparable in particle number with globular clusters.
In this range, we find that the steady-state 'deuterium main sequence' is characterized by a ratio of the core radius to half-mass radius that follows qualitatively the analytical estimate by Vesperini & Chernoff, although the N dependence is steeper than expected. Interestingly, for an initial binary fraction f greater than 10 per cent, the binary heating in the core during the post-collapse phase almost saturates (becoming nearly independent of f ), and so little variation in the structural properties is observed. Thus, although we observe a significantly lower binary abundance in the core with respect to the Fokker–Planck simulations by Gao et al., this is of little dynamical consequence.
At variance with the study of Gao et al., we see no sign of gravothermal oscillations before 150 half-mass relaxation times. At later times, however, oscillations become prominent. We demonstrate the gravothermal nature of these oscillations. 相似文献
In this range, we find that the steady-state 'deuterium main sequence' is characterized by a ratio of the core radius to half-mass radius that follows qualitatively the analytical estimate by Vesperini & Chernoff, although the N dependence is steeper than expected. Interestingly, for an initial binary fraction f greater than 10 per cent, the binary heating in the core during the post-collapse phase almost saturates (becoming nearly independent of f ), and so little variation in the structural properties is observed. Thus, although we observe a significantly lower binary abundance in the core with respect to the Fokker–Planck simulations by Gao et al., this is of little dynamical consequence.
At variance with the study of Gao et al., we see no sign of gravothermal oscillations before 150 half-mass relaxation times. At later times, however, oscillations become prominent. We demonstrate the gravothermal nature of these oscillations. 相似文献