首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.  相似文献   

2.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Recent developments in subsurface intake systems for ocean desalination plants are considering use of angled wells (slant wells) completed in permeable materials beneath the ocean floor. Conventional drawdown equations for vertical or horizontal wells are inadequate to properly describe the drawdown distribution in the vicinity of slant wells. Using the principle of superposition combined with standard well hydraulics, universal drawdown equations (UDE) are presented which calculate the drawdown distribution in the vicinity of production wells with inclination angles ranging from 0° (horizontal wells) to 90° (vertical wells). The method is computationally simple and other than the normal assumptions for standard well equations, it only requires that the calculated drawdown represent the drawdown which would be measured in a fully penetrating observation well. Solutions using the UDE are developed for confined, unconfined and semi‐confined (leaky) aquifers and compared with analytical equations for vertical and horizontal wells, and with a numerical model for slant wells. The UDE is also applied to pumping test data from the Dana Point slant well project in Southern California.  相似文献   

4.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

5.
Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water‐level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water‐level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water‐level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three‐dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping‐induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.  相似文献   

6.
Hydraulic conductivity (K) and specific storage (S(s)) are required parameters when designing transient groundwater flow models. The purpose of this study was to evaluate the ability of commonly used hydrogeologic characterization approaches to accurately delineate the distribution of hydraulic properties in a highly heterogeneous glaciofluvial deposit. The metric used to compare the various approaches was the prediction of drawdown responses from three separate pumping tests. The study was conducted at a field site, where a 15 m × 15 m area was instrumented with four 18-m deep Continuous Multichannel Tubing (CMT) wells. Each CMT well contained seven 17 cm × 1.9 cm monitoring ports equally spaced every 2 m down each CMT system. An 18-m deep pumping well with eight separate 1-m long screens spaced every 2 m was also placed in the center of the square pattern. In each of these boreholes, cores were collected and characterized using the Unified Soil Classification System, grain size analysis, and permeameter tests. To date, 471 K estimates have been obtained through permeameter analyses and 270 K estimates from empirical relationships. Geostatistical analysis of the small-scale K data yielded strongly heterogeneous K fields in three-dimensions. Additional K estimates were obtained through slug tests in 28 ports of the four CMT wells. Several pumping tests were conducted using the multiscreen and CMT wells to obtain larger scale estimates of both K and S(s). The various K and S(s) estimates were then quantitatively evaluated by simulating transient drawdown data from three pumping tests using a 3D forward numerical model constructed using HydroGeoSphere (Therrien et al. 2005). Results showed that, while drawdown predictions generally improved as more complexity was introduced into the model, the ability to make accurate drawdown predictions at all CMT ports was inconsistent.  相似文献   

7.
The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well‐face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.  相似文献   

8.
The interaction between a gaining stream and a water-table aquifer is studied at an outwash plain. The aquifer is hydraulically well connected to the stream. Pumping tests were carried out in 1997 and 1998 in two wells 60 m from the stream, screening different depths of the aquifer. Drawdown was measured on both sides of the stream. Hydraulic head, drawdown, and stream depletion data were analyzed using numerical flow models. Similar models were fitted to each of two different data sets: Model A was fitted to steady-state hydraulic head and streamflow gain data not influenced by pumping; and model B was fitted to drawdown data measured during the 1998 pumping test. Each calibrated model closely fits its calibration data; however, predictions were biased if model A was used to predict the calibration data of model B, and vice versa. To further test the models, they were used to predict streamflow depletion during the two pumping tests as well as the drawdown during the 1997 test. Neither of these data were used for calibration. Model A predicted the measured depletions fairly accurately during both tests, whereas the predicted drawdowns in 1997 were significantly larger than actually measured. Contrary to this, the 1997 drawdowns predicted by model B were nearly unbiased; the predicted depletions deviate significantly from the measured depletions in 1997, but they compare well with the observations in 1998. Thus, although field work and analyses were extensive and done carefully to develop a ground water flow model that could predict both drawdown and streamflow depletion, the model predictions are biased. Analyses indicate that the deviations between model and data may be because of error in the models' representations of either the release of water from storage or of the hydrology in the riparian zone.  相似文献   

9.
Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.  相似文献   

10.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

11.
The groundwater flow system in the Culebra Dolomite Member (Culebra) of the Permian Rustler Formation is a potential radionuclide release pathway from the Waste Isolation Pilot Plant (WIPP), the only deep geological repository for transuranic waste in the United States. In early conceptual models of the Culebra, groundwater levels were not expected to fluctuate markedly, except in response to long‐term climatic changes, with response times on the order of hundreds to thousands of years. Recent groundwater pressures measured in monitoring wells record more than 25 m of drawdown. The fluctuations are attributed to pumping activities at a privately owned well that may be associated with the demand of the Permian Basin hydrocarbon industry for water. The unprecedented magnitude of drawdown provides an opportunity to quantitatively assess the influence of unplanned anthropogenic forcings near the WIPP. Spatially variable realizations of Culebra saturated hydraulic conductivity and specific storage were used to develop groundwater flow models to estimate a pumping rate for the private well and investigate its effect on advective transport. Simulated drawdown shows reasonable agreement with observations (average Model Efficiency coefficient = 0.7). Steepened hydraulic gradients associated with the pumping reduce estimates of conservative particle travel times across the domain by one half and shift the intersection of the average particle track with the compliance boundary by more than 2 km. The value of the transient simulations conducted for this study lies in their ability to (a) improve understanding of the Culebra groundwater flow system and (b) challenge the notion of time‐invariant land use in the vicinity of the WIPP.  相似文献   

12.
Groundwater-flow models depend on hydraulic head and flux observations for evaluation and calibration. A different type of observation—change in storage measured using repeat microgravity—can also be used for parameter estimation by simulating the expected change in gravity from a groundwater model and including the observation misfit in the objective function. The method is demonstrated using new software linked to MODFLOW input and output files and field data from the vicinity of the All American Canal in southeast California, USA. Over a 10-year period following lining of the previously highly permeable canal with concrete, gravity decreased by over 100 μGal (equivalent to about 2.5 m of free-standing water) at some locations as seepage decreased and the remnant groundwater mound dissipated into the aquifer or was removed by groundwater pumping. Simulated gravity from a MODFLOW model closely matched observations, and repeat microgravity data proved useful for constraining both hydraulic conductivity and specific yield estimates. Specific yield estimated using the infinite-horizontal slab approximation agreed well with model-derived values, and the departure from the linear, flat-water-table approximation was small, less than 2%, despite relatively large and dynamic water-table slope. First-order second-moment parameter uncertainty analysis shows reduction in uncertainty for all hydraulic conductivity and specific yield parameter estimates with the addition of repeat microgravity data, as compared to drawdown data alone.  相似文献   

13.
鲁豫交界地区深井水位持续大幅度下降原因分析   总被引:4,自引:2,他引:2  
鲁豫交界地区豫01、11井和鲁27井等3口地震观测深井的水位于2006年后出现了准同步的异常下降变化,下降幅度3 ~12m不等.经调查落实,发现该地区近年来地热开采活动日益增强,开采量逐年增大,并且开采层与异常井水位观测层同属于奥陶系热储层.为此,本文依据聊城-兰考断裂带附近区域的水文地质构造特征,建立了三维地下水流动模型,基于周边地热开采量数据和相关含水层参数,运用有限差分方法计算了地热开采所引起的区域水位降落漏斗,并分析了水位下降异常的时间演化和空间分布特征.结果显示,聊城-兰考断裂带附近区域自1995年开始地热开采活动以来,其逐年增加的地热开采量与地震观测井水位的下降幅度之间存在较好的对应关系,分析认为鲁豫交界地区3口深井水位的准同步异常下降与周边地热开采活动有关.  相似文献   

14.
Site characterization in densely fractured dolomite: comparison of methods   总被引:2,自引:0,他引:2  
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.  相似文献   

15.
In a recent field study, the performance of four production wells was evaluated. The intake of a vertical turbine test pump was set below the top of the screened interval of the wells due to anticipated drawdown. Water level sounding tubes were welded to the well casing at various depths in each well. Drawdown data collected at various depths were used to evaluate the vertical head distribution in the wells under various pumping stresses. A direct relationship was observed between the head loss and the location of the pump intake in the production wells. A vertical head profile developed, suggesting that the location of the pump intake controlled the location of water production from the aquifer. The head loss in the wells observed during pumping was directly proportional to well discharge and annulus size between the well casing and the vertical turbine pump shaft. The pressure differences that developed in the wells created increased drawdown in water level sounding tubes installed deep in the wells compared to the total drawdown observed in the production wells. Certain implications should be considered based on the evaluation of the data obtained from this study. Because water management decisions are made using well test data, the quality of the data is crucial. In instances where well performance is evaluated using water level data collected from water level sounding tubes that are located close to a pump intake (in this case deep in the well), it should be recognized that well performance could be underestimated.  相似文献   

16.
It is increasingly common for the electromagnetic borehole flowmeter (EBF) to he used to measure hydraulic conductivity (K) distributions in subsurface flow systems. Past applications involving the EBF have been made mostly in confined aquifers (Kabala 1994; Boman et al. 1997; Podgorney and Ritzi 1997; Ruud and Kabala 1997a, 1997b; Flach et al. 2000), and it has been common to set up a flow field around a test well using a small pump that is located near the top of the well screen (Mob, and Young 1993). In thin, unconfined aquifers that exhibit ground water tables near the ground surface and that undergo drawdown during pumping, such a configuration can be problematical because pumping and associated drawdown may effectively isolate the upper portion of the aquifer from the flowmeter. In these instances, a steady-state flow field in the vicinity of the test well may be created using injection rather than pumping, allowing for testing in the otherwise isolated upper portion of the aquifer located near the initial water table position. Using procedures developed by Molz and Young (1993), which were modified for an injection mode application, testing was conducted to determine whether or not the injection mode would provide useful information in a shallow, unconfined aquifer that required the collection of data near the initial water table position. Results indicated that the injection mode for the EBF was well suited for this objective.  相似文献   

17.
J.W. Roy  M.C. Ryan 《Ground water》2010,48(6):869-877
Measurement of dissolved gases in groundwater is becoming increasingly common and important. Many of these measurements involve monitoring or sampling within wells or from water pumped from wells. We used total dissolved gas pressure (TDGP) sensors placed in the screened section of various wells (4 to 72 m deep) to assess the dissolved gas conditions for open wells compared to the conditions when sealed (i.e., isolated from the atmosphere) with a hydraulic packer (one well) or when pumped. When the packer was installed (non-pumping conditions), TDGP rose from <1.7 to >3.1 atm (<172 to >314 kPa), with declines noted when the packer was removed or deflated. While pumping, TDGP measured in many of the wells rose to substantially higher levels, up to 4.0 atm (408 kPa) in one case. Thus, when groundwater is gas charged, the background aquifer TDGP, and likewise the dissolved gas concentrations, may be substantially higher than initially measured in open wells, indicating significant in-well degassing. This raises concerns about past and current methods of measuring the dissolved gases in groundwater. Additional procedures that may be required to obtain representative measurements from wells include (1) installing in-well hydraulic packers to seal the well, or (2) pumping to bring in fresh groundwater. However, observed transient decreased TDGPs during pumping, believed to result from gas bubble formation induced by drawdown in the well below a critical pressure (relative to TDGP), may disrupt the measurements made during or after pumping. Thus, monitoring TDGP while pumping gas-charged wells is recommended.  相似文献   

18.
We analyze the optimal design of a pumping test for estimating hydrogeologic parameters that are subsequently used to predict stream depletion caused by groundwater pumping in a leaky aquifer. A global optimization method is used to identify the test’s optimal duration and the number and locations of observation wells. The objective is to minimize predictive uncertainty (variance) of the estimated stream depletion, which depends on the sensitivities of depletion and drawdown to relevant hydrogeologic parameters. The sensitivities are computed analytically from the solutions of Zlotnik and Tartakovsky [Zlotnik, V.A., Tartakovsky, D.M., 2008. Stream depletion by groundwater pumping in leaky aquifers. ASCE Journal of Hydrologic Engineering 13, 43–50] and the results are presented in a dimensionless form, facilitating their use for planning of pumping test at a variety of sites with similar hydrogeological settings. We show that stream depletion is generally very sensitive to aquitard’s leakage coefficient and stream-bed’s conductance. The optimal number of observation wells is two, their optimal locations are one close to the stream and the other close to the pumping well. We also provide guidelines on the test’s optimal duration and demonstrate that under certain conditions estimation of aquitard’s leakage coefficient and stream-bed’s conductance requires unrealistic test duration and/or signal-to-noise ratio.  相似文献   

19.
Water samples from private water supply wells in five unsewered subdivisions were tested for nitrate-nitrogen to determine the possible impact of septic systems on ground water quality. Three subdivisions are located in Eau Claire County and two in LaCrosse County, Wisconsin.
The nitrate-nitrogen concentrations in the wells were analyzed in relation to ground water flow direction, the location of septic systems within the subdivision, and the hydrogeologic and physical characteristics of the subdivisions. A comparison of three nitrogen mass balance models helped to identify the possible sources of nitrate-nitrogen in the wells.
The results indicate that nitrogen from septic systems and lawn fertilizer cause nitrate-nitrogen to increase in the ground water beneath the downgradient side of the subdivisions. In three of the five subdivisions the highest nitrate-nitrogen value exceeds the drinking water standard of 10 mg/L.  相似文献   

20.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号