首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A statistical approach by a modified Markov process model and entropy function is used to prove that the early Permian Barakar Formation of the Bellampalli coalfield developed distinct cyclicities during deposition. From results, the transition path of lithological states typical for the Bellampalli basin is as: coarse to medium-grained sandstone → interbedded fine-grained sandstone/shale → shale → coal and again shale. The majority of cycles are symmetrical but asymmetrical cycles are present as well. The chi-square stationarity test implies that these cycles are stationary in space and time. The cycles are interpreted in terms of in-channel, point bar and overbank facies association in a fluvial system. The randomness in the occurrence of facies within a cycle is evaluated in terms of entropy, which can be calculated from the Markov matrices. Two types of entropies are calculated for every facies state; entropy after deposition E(post) and entropy before deposition E(pre), which together form entropy set; the entropy for the whole system is also calculated. These values are plotted and compared with Hattori’s idealized plots, which indicate that the sequence is essentially a symmetrical cycle (type-B of Hattroi). The symmetrical cyclical deposition of early Permian Barakar Formation is explained by the lateral migration of stream channels in response to varying discharge and rate of deposition across the alluvial plain. In addition, the fining upward cycles in the upper part enclosing thick beds of fine clastics, as well as coal may represent differential subsidence of depositional basin.  相似文献   

2.
Statistical analysis of borehole sections through the Illawarra and Newcastle Coal Measures of the Sydney Basin shows that cyclic sedimentation is present. The composite sequence for the Southern Coalfield (Illawarra Coal Measures) is (in ascending order): sandstone—sandstone/siltstone alternations—shale—coal, whereas that for the Newcastle Coalfield is: shale—sandstone/siltstone alternations—sandstone, often conglomeratic, or conglomerate—sandstone/siltstone alternations—shale —coal.

The environment of deposition is discussed. It is suggested that in the Southern Coalfield cyclicity is due to sedimentational processes inherent in the deltaic and alluvial conditions envisaged during Permian times. Periodic influxes of glacial meltwaters, although not essential, are not ruled out.

In the Newcastle Coalfield, however, the composite sequence does not match easily the ideal cycles expected in deltaic and/or alluvial regimes. Contemporary volcanism and tectonism complicated matters and lack of sedimentological details makes it impossible at present to give preference to any one mechanism of cycle formation.  相似文献   

3.
The Karharbari and Barakar coal measures of Giridih and Saharjuri basins of Bihar, eastern India, comprise an interbedded assemblage of sandstone, shale and coal in variable abundance. The lithofacies composition records a progressive decrease in sandstone and enrichment of shale and coal from Karharbari up to Barakar. Application of first-order embedded Markov-chain statistics to subsurface data of Karharbari (52 borehole logs) and Barakar (10 borehole logs) reveals that deposition in both the coal measures followed a Markovian mechanism with variable probability, to yield a sequence of upward transition from sandstone through shale to coal. The repetitive fining-upward cycles are asymmetrical, i.e. sandstone → shale → coal → sandstone in the case of Karharbari, but symmetrical as sandstone → shale → coal → shale in Barakar.The abundance of sandstone and the asymmetrical nature of Karharbari cycles are attributed to abrupt shifting of channel bars in low-sinuosity anabranching streams. By contrast, the subequal amount of sandstone, shale and coal forming symmetrical cycles in the overlying Barakar Formation is due perhaps to a slow and gradual shift of the stream channels over and across the adjacent subenvironments of the flood plain.  相似文献   

4.
《China Geology》2020,3(1):38-51
Coal measure gas (also known as coal-bearing unconventional gas) is the key field and development direction of unconventional natural gas in recent years. The exploration and evaluation of coal measure gas (coalbed methane, coal shale gas and coal measure tight sandstone gas) from single coalbed methane has greatly expanded the field and space of resource evaluation, which is of positive significance for realizing the comprehensive utilization of coal resources, maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development. For the first time, in Yangmeishu Syncline of Western Guizhou Province, the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation, identified the geological conditions of coal measure gas and found high quality resources. The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×109 m3/km2. In this area, the coal measures are characterized by many layers of minable coal seams, large total thickness, thin to the medium thickness of the single layer, good gas-bearing property of coal seams and coal measure mudstone and sandstone, good reservoir physical property and high-pressure coefficient. According to the principle of combination of high quality and similarity of key parameters of the coal reservoir, the most favorable intervals are No.5−2, No.7 and No.13−2 coal seam in Well YMC1. And the pilot tests are carried out on coal seams and roof silty mudstone, such as staged perforation, increasing hydraulic fracturing scale and “three gas” production. The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained, which has realized the breakthrough in the geological survey of coal measure gas in Southwest China. Based on the above investigation results, the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the co-exploration and co-production methods, such as the optimization method of favorable intervals, the high-efficiency fracturing and reservoir reconstruction method of coal measures, and the “three gas” drainage and production system, are systematically summarized in this paper. It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China.  相似文献   

5.
Many difficulties inherent in analyzing cyclical successions in terms of an idealized cycle and, to a lesser extent, in terms of the modal cycle and composite sequence can be overcome by structuring data in terms of probabilities of upward transitions from one lithology to another. This enables a finite Markov-process model to be used. Transition probability matrices have been constructed from two versions of the same borehole section through paralic Namurian (Pendleian Stage, E 1 ) sediments east of Stirling. The first version does not allow, but the second allows, adjacent items to be of the same lithology. The matrix derived from the first version indicates the following preferred upward succession of lithologies: coal, mudstone, siltstone, sandstone, seatclay, silty and sandy rooty beds, coal. A version of the Chi-square test strongly rejects the hypothesis that the lithologies were deposited in random order. The second matrix is used as computer input forTestmark, Stochex, andMarchain programs, the last of which stimulates a realistic vertical succession. The transition probability data fit readily into the broad framework of deltaic cycles.Published with permission of the Director, Institute of Geological Sciences.  相似文献   

6.
Classification is of interest to geologists as a convenient means of expressing ideas and concepts. Most classification schemes categorize a continuum into discrete classes or states based on some prominent character of the objects being classified. Unknowns then are identified as to their position within the classification scheme. Until recently most geologic classification schemes have been qualitative. With advent of the computer, applications of many quantitative statistical techniques have become practical. These techniques offer the advantages of repeatability and objectivity. This report gives results of the applications of several techniques for classifying Carboniferous cyclic rock sequences. Twenty sections were measured in detail in Great Britain and the United States. Particular importance was placed on noting transition from one lithology to another. Seven lithologic types were distinguished: (a) sandstone, (b) siltsone, (c) nonfossiliferous shale, (d) seatearth or underclay, (e) coal, (f) fossiliferous shale, and (g) limestone. It was noted also which part of the sequence was marine and which nonmarine. From the original data, the number of changes per 100 ft were calculated as well as an entropy index indicating the “orderliness” of the sequence and a matching index obtained by comparing the similarity in sequences of lithology between pairs of sections. The matching index is based on qualitative characters and in this regard belongs to a type of sequential analysis of scaleless nonnumeric data. The matching coefficients were clustered and displayed as dendrograms. A cluster analysis also was performed using nine variables (number of changes per 100 ft, entropy index, percentage thickness of sandstone, siltstone, nonfossiliferous shale, seatearth and coal, fossiliferous shale, and limestone, and percentage of nonmarine units) and the results displayed as dendrograms. In addition principal components analysis utilized the nine variables to determine if groups were present in the data. The first three principal components were interpreted geologically and a three-dimensional model constructed. Three loosely grouped clusters could be recognized in this display: (1) cyclic sequences associated with deltaic complexes, (2) sequences characteristic of deposition farther offshore, and (3) those composed mainly of marine sequences formed in an offshore open-marine environment.  相似文献   

7.
Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan'an Formation and the lowstand system tract of the Zhiluo Formation,and there is a regional unconformity between them. The Dongsheng uranium deposit is associated with the Jurassic coal measures. Research data indicate that the Jurassic coal measures in the study area have a certain hydrocarbon-generating capacity,although the metamorphic grade is low(Ro=0.40%–0.58%). In the Dongsheng region alone,the accumulative amount of generated coalbed methane(CBM) is about 2028.29 × 108 –2218.72 × 108 m~3; the residual amount is about 50.92 × 108 m~3,and the lost amount is about 1977 × 108 m~3. Analysis of the burial history of the host rocks and the evolutionary history of the Dongsheng uranium deposit suggests that the Jurassic coal measures generated hydrocarbon mainly from Middle Jurassic to Early Crataceous,which is the main mineralization phase of the Dongsheng uranium deposit. By the Late Cretaceous,a mass of CBM dissipated due to the strong tectonic uplift,and the Dongsheng uranium deposit stepped into the preservation phase. Therefore,the low-mature hydrocarbon-containing fluid in the Jurassic coal measures not only served as a reducing agent for the formation of sandstone-type uranium deposits,but also rendered the second reduction of paleo-interlayer oxidation zone and become the primary reducing agent for ore conservation. Regional strata correlation reveals that the sandstone-type uranium reservoir at the bottom of the Zhiluo Formation is in contact with the underlying industrial coal seams in the Yan'an Formation through incision or in the form of an unconformity surface. In the Dongsheng region with poorly developed fault systems,the unconformity surface and scour surface served as the main migration pathways for low-mature hydrocarbon-containing fluid migrating to the uranium reservoir.  相似文献   

8.
煤系页岩气是未来非常规天然气的勘探方向。以鄂尔多斯盆地东部为例,对区内上古生界煤系太原组和山西组页岩气成藏的构造条件、储层特征和资源潜力进行了分析。研究认为,区内构造简单,泥页岩储层埋藏浅,厚度大,泥页岩有机质演化程度较高,有机碳含量较高,页岩气含量较高,页岩气成藏条件较优越,页岩气勘探开发的有利区位于府谷-神木-临县一带。鄂尔多斯盆地东部上古生界煤层发育,煤层气含量较高,局部层段存在砂岩气,页岩气可与煤层气、煤系砂岩气等综合勘查、共同开发。   相似文献   

9.
The northern Ordos Basin provides a favorable geological environment for the accumulation and development of coal measure gases (CMG). The hydrocarbon generation potential and reservoir systems of the coal measures have been studied based on data from experimental tests and production and exploration wells, respectively. Further, the coupled accumulation characteristics were determined. The results show that the source rocks are characterized by favorable hydrocarbon generation potential, high thermal evolution (Ro%?=?1.3–2.3%), and mainly type III kerogen. Coals, typically aggregated organic matter, with a huge hydrocarbon generation potential (avg. 89.11 mg/g) and total organic content (TOC) (avg. 65.52%), are predominantly involved in gaseous hydrocarbon generation. Shales with good TOC contents (avg. 2.36%) and large cumulative thicknesses have an important role in gaseous hydrocarbon generation. Coal seams, shale layers, and sandstone layers occur as variably interbedded deposits, which form a favorable environment for CMG coupled accumulation. The porosity and permeability are ranked as follows: sandstone?>?coal?>?shale, with significant stress sensitivity and anisotropy. Two continuous gas generation peaks occurred in the Late Jurassic and Late Cretaceous, with an abundant amount of coal-derived and thermogenic gas generation, respectively. Potential gas-bearing sandstone layers can be formed by gas migration via short distances from nearby coal seams and shale layers. Coupled accumulation of CMG occurred in three stages: (1) stacked and interbedded reservoirs formation stage; (2) gas generating and charging stage; and (3) coupled accumulation adjustment stage. Coalbed methane (CBM)–tight sandstone gas (TSG) assemblage is a favorable target for CMG accumulation and development.  相似文献   

10.
一种页岩含气性热演化规律研究的模拟实验方法   总被引:1,自引:1,他引:1  
目前针对页岩气赋存规律研究的热模拟实验主要是沿袭常规油气热模拟方法,以粉末态样品开展模拟,研究对象为岩石生成并排出的烃类气体,这种模拟方式未明确页岩气的实质为"滞留气",并且模拟后样品无法开展扫描电镜分析,不能确定岩石孔隙结构变化规律。本文通过石英玻璃管封装块状样开展页岩生烃热模拟实验,并结合一套数据处理方法,尝试建立了一种适合页岩气研究的热模拟实验方法,研究泥页岩在不同演化阶段(Ro范围为0.596%~2.143%)不同赋存状态气体的含量以及岩石微观孔隙特征的变化情况。结果表明,泥岩及油页岩样品的排出气及解析气含量在高成熟度阶段(400℃以后)有明显增加的趋势,结合扫描电镜微观结构分析显示这是由于有机质生气量以及无机孔隙均有增加。本方法可以研究页岩热演化过程中不同赋存状态气体含量及微观孔隙结构的变化,为页岩气勘探开发提供了一种可参考的方法。  相似文献   

11.
Following the recommendation of the “IASPEI Commission on Magnitudes” from 1967, P-wave magnitudes of distant earthquakes are being computed with the aid of the calibration functions of Gutenberg and Richter (1956). With the development of the instrumental seismology, especially in view of the availability of broad-band recordings, the question arises whether the functions are still adequate.In this investigation new calibration functions for P- and S-waves are presented, which are not only dependent on epicentral distance and focal depth, but also on the period of the spectral component of the wave. The determination of calibration functions is based on the currently most plausible global models for the velocity and anelasticity distribution. Taking into account the effective bandwidth of the instruments employed, eventually leads to the so-called spectral magnitudes.From the spectral magnitudes m(T) , the energy density spectrum E(T) of the respective wave can readily be computed. The corresponding formula is E(T) = 102m(T)− 1.4, with E(T) in joules per hertz.  相似文献   

12.
Cyclic characteristics of bed forms (sedimentary structures) of early Permian fluvial Barakar rocks are studied statistically, using quasi-independence Markov chain and entropy. The hierarchy of sedimentary structures confirms that the corresponding bed forms do not represent random depositional event and follow a definite pattern of Markovian mechanism in a predictable cyclic arrangement. The preferential upward transition of sedimentary structures that can be derived for the Barakar sandstone is scoured surface (Ss) → horizontal bedding (Sh) → planar cross-bedded sandstone (Sp) → trough cross-bedded sandstone (St) → ripple cross-lamination (Sr) → parallel lamination (Fl) → scoured surface (Ss). The sequence is an asymmetrical cycle and characteristic of the lateral accretion and aggradations of fluvial channels. Entropy analysis corroborate the above inference, and E (pre) vs E(post) plots for each sedimentary structure correspond to the type B category, suggesting lower and upper truncated asymmetrical cycles. Hydro-dynamically, the Barakar cycles represent a vertical sequence of bedding types which implies a steady upward decrease in the intensity of flow—from the upper flow regime in the lower part, the lower flow regime of moderate to high intensity in the middle part, and the lower flow regime of low to very low intensity in the upper part.  相似文献   

13.
Palaeo shoreline is a commonly used proxy for palaeo sea level, but only if deposition is continuous and constant will shoreline trajectory T(l) completely capture sea‐level time‐series E(t). Artificial deltas were generated in the Eurotank flume facility under stepwise tectonic subsidence, periodic sea‐level fluctuation and two periodic water‐discharge scenarios, one in‐phase and the other out‐of‐phase with sea level. Independent input variables tectonic subsidence Y, sea level E and water discharge Q (controlling sediment supply S) were varied and dependent output variable shoreline trajectory T was monitored. These experiments confirm that deposition is discontinuous even for continuous sediment supply, and this hinders the inference of sea‐level curve from shoreline trajectory. These results justify the here‐developed methodology for converting shoreline trajectory from the space domain to the time domain, thereby improving the accuracy of the inferred sea‐level curve.  相似文献   

14.
Geologic structures can represent planes of preferential weakness that, by dismembering the roof beam, may contribute to the failure of roof spans. However, beam deflection and roof failure also occur in rocks where no visible geologic discontinuities are present. This suggests that roof failure may depend on rock strength, which in turn depends on intrinsic textural properties inherent to the rock. In this study, rock samples were collected from horizontal stress-related roof fall material in coal mines for petrographic characterization and compressive strength testing. Brittle, stress failure-prone rock types include thinly interlaminated siltstone and shale, and black shale that had been lightly recrystallized. Samples exhibit a narrow range of density values between approximately 2.5–3.0 g/cm3 but exhibit a wide range of unconfined compressive strength values, between approximately 20–70 MPa. Results of laboratory observations suggest that for samples of coal mine immediate roof shale, compressive strength is not well correlated with density, grain size, sutured grain boundaries, or quartz content. These results for shale are generally at odds with the results of similar studies for sandstone. The great variability of strength, texture, and mineralogy documented in these samples may be an indication of their complexity and the need for specialized methodology in the study of shale strength.  相似文献   

15.
Oligocene-Miocene deposits of Bhuban and Boka Bil Formations, Surma Group, Manipur Western Hill consist of well preserved ichnofossil assemblages. These formations are represented by eight lithofacies such as Massive sandstone (Sm), Rippled marked argillaceous sandstone (Sr), Wavy laminated sandstone-siltstone-silty shale (Sw), Laminated shale (Fl), Massive mudstone (Fm), Trough cross-bedded sandstone (St), Lenticular laminated sandstonesiltstonesilty shale (Sll) and Laminated to massive sandstone-siltstone (Ssc). Fifteen ichnospecies were identified, which further categories into Skolithos, Cruziana, and Skolithos/Cruziana ichnofacies. Overall distribution pattern and behavioural nature of the ichnoassemblage and sedimentological attributes suggests that the sediments of Bhuban and Boka Bil Formations were deposited under frequent fluctuating sea level, moderate to strong energy condition, subtidal to lower intertidal environment, rich in organic nutrients.  相似文献   

16.
Jarosite phases are common minerals in acidic, sulfate-rich environments. Here, we report heat capacities (C p) and standard entropies (S°) for a number of jarosite samples. Most samples are close to the nominal composition AFe3(SO4)2(OH)6, where A = K, Na, Rb, and NH4. One of the samples has a significant number of defects on the Fe sites and is called the defect jarosite; others are referred to as A-jarosite. The samples, their compositions, and the entropies at T = 298.15 K are:
Sample Chemical composition S o/(J mol−1 K−1)
K-jarosite K0.92(H3O)0.08Fe2.97(SO4)2(OH)5.90(H2O)0.10 427.4 ± 0.7
Na-jarosite Na0.95(H3O)0.05Fe3.00(SO4)2(OH)6.00 436.4 ± 4.4
Rb-jarosite RbFe2.98(SO4)2(OH)5.95(H2O)0.05 411.9 ± 4.1
NH4-jarosite (NH4)0.87(H3O)0.13Fe3.00(SO4)2(OH)6.00 447.2 ± 4.5
Defect jarosite K0.94(H3O)0.06Fe2.34(SO4)2(OH)4.01(H2O)1.99 412.7 ± 4.1
There are additional configurational entropies of 13.14 and 8.23 J mol−1 K−1 in defect and NH4-jarosite, respectively. A detailed analysis of the synchrotron X-ray diffraction patterns showed a large anisotropic peak broadening for defect and NH4-jarosite. The fits to the low-temperature (approx. <12 K) C p data showed that our samples can be divided into two groups. The first group is populated by the K-, Na-, Rb-, and NH4-jarosite samples, antiferromagnetic at low temperatures. The second group contains the H3O-jarosite (studied previously) and the defect jarosite. H3O- and defect jarosite are spin glasses and their low-T C p was fit with the expression C p = γT + ΣB j T j , where j = (3, 5, 7, 9). The linear term is typical for spin glasses and the sum represents the lattice contribution to C p. Surprisingly, the C p of the K-, Na-, Rb-, and NH4-jarosite samples, which are usually considered to be antiferromagnetic at low temperatures, also contains a large linear term. This finding suggests that even these phases do not order completely, but have a partial spin-glass character below their Néel transition temperature.  相似文献   

17.
Hundreds of samples and 17 variables collected from coalfields of major coal-bearing strata over China except for Tibet and Taiwan, were used in this study. The dry, ash-free basis volatile matter (V r) and caking index (G (RI)) were chosen by means of correlation analysis and stepwise discriminatory analysis as major indices of a new classification. By means of the optimum section, the boundary value of the axis of ordinate (G (RI)) and axis of abscissas (V r) can be determined in the classification system. Thus, aV rG (RI) classification scheme diagram was formed and bituminous coal was divided into nine classes. Use of correspondence analysis reduced dimensions of sample-expressive space without losing initial information. The trend on the factor surface of samples shows that the classification obtained from correspondence analysis conforms to theV rG (RI) classification result and further verified the dependability of classification by two indices. At the same time, a certain relationship between the properties of a great variety of coal and their attributes can be explained. Hence, bituminous coal classification becomes more scientific, reasonable, and practical than before.  相似文献   

18.
The attachment energies, the slice energies and the specific surface energies can be calculated in an electrostatic point charge model using the formula derived by Madelung for the potential introduced by an infinite row of equally spaced point charges. Power series are given for the Hankel function iH (0) (1) (iy) and (x)=d ln x!/dx. The logarithmic expression in the Madelung formula converges rapidly when applying a power series, which combines equally charged cations and anions. Besides the specific surface energy ( hkl), the slice energy (E s hkl ) and the attachment energy (E a hkl ) can be considered as special categories of surface energies as they depend on surface configurations as well. The specific surface energy is the energy per unit area of surface needed to split the crystal parallel to a face (hkl). The attachment energy (E a) is the energy released per mole, when a new slice of thickness d hkl crystallizes on an already existing crystal face (hkl). The growth rate of the crystal face (hkl) is a function of its attachment energy. The slice energy (E s) is the energy released per mole, when a new slice d hkl is formed from the vapour neglecting the influence of edge energies. The lattice energy (E c) which is the energy released per mole of a crystal crystallizing from the vapour, is given by the following relation: E c=E a+E s.  相似文献   

19.
Porous cordierite ceramics were prepared from a mixture of coal fly ash and basic magnesium carbonate at 1100-1350℃. Porosity, flexural strength and thermal expansion coefficient of the samples sintered at 1300℃ were estimated to be 26%, 65 MPa and 4.21×10^-6/℃, respectively. The kinetics of the formation progress was investigated by stepwise isothermal dilatometry (SID) accompanied with XRD, SEM and porosity measurement. It was found that the isothermal shrinkage data from SID could be well analyzed to get kinetic parameters according to the erapirical rate equation developed by Makipirtti-Meng, dY/dt=nk(T)Y(1-Y)(Y/1-Y)^(1/n),where Y is the fractional shrinkage during the sintering process and n is a dimensionless component. The apparent activation energy △E values for 900-1000℃ and 1050-1 150℃ were 1294 and 1778 kJ/mol, respectively.  相似文献   

20.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号