首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurements of sunspot positions and areas that were published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), as the Greenwich Photo-heliographic Results (GPR), 1874?–?1976, exist in both printed and digital forms. These printed and digital sunspot datasets have been archived in various libraries and data centres. Unfortunately, however, typographic, systematic and isolated errors can be found in the various datasets. The purpose of the present paper is to begin the task of identifying and correcting these errors. In particular, the intention is to provide in one foundational paper all the necessary background information on the original solar observations, their various applications in scientific research, the format of the different digital datasets, the necessary definitions of the quantities measured, and the initial identification of errors in both the printed publications and the digital datasets. Two companion papers address the question of specific identifiable errors; namely, typographic errors in the printed publications, and both isolated and systematic errors in the digital datasets. The existence of two independently prepared digital datasets, which both contain information on sunspot positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable sunspot digital dataset, based on the programme of solar observations supported for more than a century by the Royal Observatory, Greenwich, and the Royal Greenwich Observatory. This improved dataset should be of value in many future scientific investigations.  相似文献   

2.
A new sunspot and faculae digital dataset for the interval 1874?–?1955 has been prepared under the auspices of the NOAA National Geophysical Data Center (NGDC). This digital dataset contains measurements of the positions and areas of both sunspots and faculae published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), under the title Greenwich Photo-heliographic Results (GPR), 1874?–?1976. Quality control (QC) procedures based on logical consistency have been used to identify the more obvious errors in the RGO publications. Typical examples of identifiable errors are North versus South errors in specifying heliographic latitude, errors in specifying heliographic (Carrington) longitude, errors in the dates and times, errors in sunspot group numbers, arithmetic errors in the summation process, and the occasional omission of solar ephemerides. Although the number of errors in the RGO publications is remarkably small, an initial table of necessary corrections is provided for the interval 1874?–?1917. Moreover, as noted in the preceding companion papers, the existence of two independently prepared digital datasets, which both contain information on sunspot positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable sunspot digital dataset, based on the long programme of solar observations supported first by the Royal Observatory, Greenwich, and then by the Royal Greenwich Observatory.  相似文献   

3.
4.
5.
6.
The solar program of the Astronomical Observatory of Madrid started in 1876. Observations were made in this institution to determine sunspot numbers and areas for ten solar cycles. The program was completed in 1986 and the resulting data have been published in various Spanish scientific publications. Four periods of this program (with different observers and instruments) were identified with the aid of the interesting metadata that has been made available. In the present work, the published data were retrieved and digitized. Their subsequent analysis showed that most of these data could be considered reliable given their very high correlation with reference indices (international sunspot number, group sunspot number, and sunspot area). An abrupt change emerged in the sunspots/groups ratio in 1946, which lasted until 1972.  相似文献   

7.
A sunspot catalogue was maintained by the Astronomical Observatory of Valencia University (Spain) from 1920 to 1928. Here we present a machine-readable version of this catalogue (OV catalogue or OVc), including a quality-control analysis. Sunspot number (total and hemispheric) and sunspot area series are constructed using this catalogue. The OV catalogue data are compared with other available solar data, demonstrating that the present contribution provides the scientific community with a reliable catalogue of sunspot data.  相似文献   

8.
A sunspot catalogue was published by the Coimbra Astronomical Observatory (Portugal), which is now called the Geophysical and Astronomical Observatory of the University of Coimbra, for the period 1929?–?1941. We digitalised data included in that catalogue and provide a machine-readable version. We show the reconstructions for the (total and hemispheric) sunspot number index and sunspot area according to this catalogue and compare it with the sunspot number index (version 2) and the Balmaceda sunspot area series (Balmaceda et al. in J. Geophys. Res.114, A07104, 2009). Moreover, we also compared the Coimbra catalogue with records made at the Royal Greenwich Observatory. The results demonstrate that the historical catalogue compiled by the Coimbra Astronomical Observatory contains reliable sunspot data and can therefore be considered for studies about solar activity.  相似文献   

9.
J. Javaraiah 《Solar physics》2012,281(2):827-837
We have analyzed the combined Greenwich and Solar Optical Observing Network (SOON) sunspot group data during the period of 1874??C?2011 and determined variations in the annual numbers (counts) of the small (maximum area A M<100 millionth of solar hemisphere, msh), large (100??A M<300?msh), and big (A M??300?msh) spot groups. We found that the amplitude of an even-numbered cycle of the number of large groups is smaller than that of its immediately following odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl rule (G?CO rule) of solar cycles, generally described by using the Zurich sunspot number (R Z). During cycles 12??C?21 the G?CO rule holds good for the variation in the number of small groups also, but it is violated by cycle pair (22, 23) as in the case of R Z. This behavior of the variations in the small groups is largely responsible for the anomalous behavior of R Z in cycle pair (22, 23). It is also found that the amplitude of an odd-numbered cycle of the number of small groups is larger than that of its immediately following even-numbered cycle. This might be called the ??reverse G?CO rule??. In the case of the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated the G?CO rule. In many cycles the positions of the peaks of the small, large, and big groups are different, and considerably differ with respect to the corresponding positions of the R Z peaks. In the case of cycle?23, the corresponding cycles of the small and large groups are largely symmetric/less asymmetric (the Waldmeier effect is weak/absent) with their maxima taking place two years later than that of R Z. The corresponding cycle of the big groups is more asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the same time as that of R Z.  相似文献   

10.
R. P. Kane 《Solar physics》2014,289(7):2727-2732
Hysteresis plots between cosmic-ray (CR) intensity (recorded at the Climax station) and sunspot relative number R Z show broad loops in odd cycles (19, 21, and 23) and narrow loops in even cycles (20 and 22). However, in the even cycles, the loops are not narrow throughout the whole cycle; around the sunspot-maximum period, a broad loop is seen. Only in the rising and declining phases, the loops are narrow in even cycles. The CR modulation is known to have a delay with respect to R Z, and the delay was believed to be longer in odd cycles (19, 21, and 23; about 10 months) than the delay in even cycles (20 and 22; about 3?–?5 months). When this was reexamined, it was found that the delays are different during the sunspot-minimum periods (2, 6, and 14 months for odd cycles and 7 and 9 months for even cycles) and sunspot-maximum periods (0, 4, and 7 months for odd cycles and 5 and 8 months for even cycles). Thus, the differences between odd and even cycles are not significant throughout the whole cycle. In the recent even cycle 24, hysteresis plots show a preliminary broadening near the sunspot maximum, which occurred recently (February 2012). The CR level (recorded at Newark station) is still high in 2013, indicating a long lag (exceeding 10 months) with respect to the sunspot maximum.  相似文献   

11.
12.
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time–distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20?Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.  相似文献   

13.
This paper presents an alternative interpretation for the wide scatter and apparent lack of anti-correlation in the relationship between the spectral luminosity (L ν ) and synchrotron peak frequency (ν peak ) in a sample of BL Lac Objects contained in Wu et al. (Astron. Astrophys. 466:43, 2007) compilation. The apparent lack of correlation between the parameters contradicts the blazar sequence proposed by Fossati et al. (in Mon. Not. R. Astron. Soc. 299:433, 1998), which predicts a general decline in L ν with increasing ν peak . Analysis of the radio luminosity and synchrotron peak frequency data of the sample reveals a strong selection effect, due to Malmquist bias. We show that a clear anti-correlation (r~?0.7) between the radio luminosity at synchrotron peak (L peak ) and ν peak exists for the BL Lac sample above some redshift cut-off (z c =0.3), which may correspond to the flux limit of the sample. The results are not only in agreement with FRI–BL Lac unification, but also suggest that the present data is consistent with the blazar sequence.  相似文献   

14.
The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a?time?–?distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time?–?distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a?minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors that they produce.  相似文献   

15.
R. P. Kane 《Solar physics》2008,249(2):355-367
The 12-month running means of the conventional sunspot number Rz, the sunspot group numbers (SGN) and the frequency of occurrence of Coronal Mass Ejections (CMEs) were examined for cycle 23 (1996 – 2006). For the whole disc, the SGN and Rz plots were almost identical. Hence, SGN could be used as a proxy for Rz, for which latitude data are not available. SGN values were used for 5° latitude belts 0° – 5°, 5° – 10°, 10° – 15°, 15° – 20°, 20° – 25°, 25° – 30° and > 30°, separately in each hemisphere north and south. Roughly, from latitudes 25° – 30° N to 20° – 25° N, the peaks seem to have occurred later for lower latitudes, from latitudes 20° – 25° N to 15° – 20° N, the peaks are stagnant or occur slightly earlier, and then from latitudes 15° – 20° N to 0° – 5° N, the peaks seem to have occurred again later for lower latitudes. Thus, some latitudinal migration is suggested, clearly in the northern hemisphere, not very clearly in the southern hemisphere, first to the equator in 1998, stagnant or slightly poleward in 1999, and then to the equator again from 2000 onwards, the latter reminiscent of the Maunder butterfly diagrams. Similar plots for CME occurrence frequency also showed multiple peaks (two or three) in almost all latitude belts, but the peaks were almost simultaneous at all latitudes, indicating no latitudinal migration. For similar latitude belts, SGN and CME plots were dissimilar in almost all latitude belts except 10° – 20° S. The CME plots had in general more peaks than the SGN plots, and the peaks of SGN often did not match with those of CME. In the CME data, it was noticed that whereas the values declined from 2002 to 2003, there was no further decline during 2003 – 2006 as one would have expected to occur during the declining phase of sunspots, where 2007 is almost a year of sunspot minimum. An inquiry at GSFC-NASA revealed that the person who creates the preliminary list was changed in 2004 and the new person picks out more weak CMEs. Thus a subjectivity (overestimates after 2002) seems to be involved and hence, values obtained before and during 2002 are not directly comparable to values recorded after 2002, except for CMEs with widths exceeding 60°.  相似文献   

16.
We present large scale observations of C18O(1–0) towards four massive star forming regions: MON R2,S156,DR17/L906 and M17/M18. The transitions of H2CO(110–111),C18O(1–0) and the 6 cm continuum are compared in these four regions. Our analysis of the observations and the results of the Non–LTE model shows that the brightness temperature of the formaldehyde absorption line is strongest in a background continuum temperature range of about 3 – 8 K. The excitation of the H2 CO absorption line is affected by strong background continuum emission. From a comparison of H2 CO and C18 O maps,we found that the extent of H2 CO absorption is broader than that of C18 O emission in the four regions. Except for the DR17 region,the maximum in H2 CO absorption is located at the same position as the C18 O peak. A good correlation between intensities and widths of H2 CO absorption and C18 O emission lines indicates that the H2 CO absorption line can trace the dense,warm regions of a molecular cloud. We find that N(H2CO) is well correlated with N(C18O) in the four regions and that the average ratio of column densities is N(H2CO)/N(C18O) ~ 0.03.  相似文献   

17.
18.
The Lyman-alpha Solar Telescope(LST) is one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S) mission. It aims at imaging the Sun from the disk center up to 2.5 R_⊙ targeting solar eruptions, particularly coronal mass ejections(CMEs), solar flares, prominences/filaments and related phenomena, as well as the fast and slow solar wind. The most prominent speciality of LST is the simultaneous observation of the solar atmosphere in both Lyα and white light(WL)with high temporospatial resolution both on the solar disk and the inner corona. New observations in the Lyα line together with traditional WL observations will provide us with many new insights into solar eruptions and solar wind. LST consists of a Solar Corona Imager(SCI) with a field of view(FOV) of 1.1 –2.5 R_⊙, a Solar Disk Imager(SDI) and a full-disk White-light Solar Telescope(WST) with an identical FOV up to 1.2 R_⊙. SCI has a dual waveband in Lyα(121.6 ± 10 nm) and in WL(700 ± 40 nm), while SDI works in the Lyα waveband of 121.6 ± 7.5 nm and WST works in the violet narrow-band continuum of 360 ± 2.0 nm. To produce high quality science data, careful ground and in-flight calibrations are required.We present our methods for different calibrations including dark field correction, flat field correction, radiometry, instrumental polarization and optical geometry. Based on the data calibration, definitions of the data levels and processing procedures for the defined levels from raw data are described. Plasma physical diagnostics offer key ingredients to understand ejecta and plasma flows in the inner corona, as well as different features on the solar disk including flares, filaments, etc. Therefore, we are making efforts to develop various tools to detect the different features observed by LST, and then to derive their physical parameters,for example, the electron density and temperature of CMEs, the outflow velocity of the solar wind, and the hydrogen density and mass flows of prominences. Coordinated observations and data analyses with the coronagraphs onboard Solar Orbiter, PROBA-3, and Aditya are also briefly discussed.  相似文献   

19.
As one of the payloads for the Advanced Space-based Solar Observatory(ASO-S) mission, the Lyman-alpha(Lyα) Solar Telescope(LST) is aimed at imaging the Sun and the inner corona up to 2.5 R_⊙(mean solar radius) in both the Lyα(121.6 nm) and visible wavebands with high temporo-spatial resolution,mainly targeting solar flares, coronal mass ejections(CMEs) and filaments/prominences. LST observations allow us to trace solar eruptive phenomena from the disk center to the inner corona, to study the relationships between eruptive prominences/filaments, solar flares and CMEs, to explore the dynamical processes and evolution of solar eruptions, to diagnose solar winds, and to derive physical parameters of the solar atmosphere. LST is actually an instrument suite, which consists of a Solar Disk Imager(SDI), a Solar Corona Imager(SCI), a White-light Solar Telescope(WST) and two Guide Telescopes(GTs). This is the first paper in a series of LST-related papers. In this paper, we introduce the scientific objectives, present an overview of the LST payload and describe the planned observations. The detailed design and data along with potential diagnostics are described in the second(Paper II) and third(Paper III) papers, respectively, appearing in this issue.  相似文献   

20.
Observations of GPS satellites at permanent stations located in Ukraine and in Eastern Europe have been processed at the GPS Data Analysis Centre of the Main Astronomical Observatory. The processing was carried out with the Bernese GPS Software Version 4.2. The processing procedure is described. The obtained coordinates of the GPS stations for GPS week 1399 are presented. Variations in the coordinates and zenith troposphere refractions for POLV and TRAB stations are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号