首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 引言 正确地掌握耕地蒸散量,不仅有利于土壤水分管理,而且有利于提高产品的产量和品质。因此,提出了许多预测蒸散量的模型,但还没有在任何地区环境条件下,都能使用的完整模型。 蒸散现象,在许多情况下受气象条件所支配,因此,蒸散量的预测模型,也由种种气象条件所构成,但是,如果土壤水分不足,作为蒸散面的土壤表面,就会  相似文献   

2.
根据南京地区粳稻、籼稻两个品种水稻分别在干旱、水层条件下的逐时、逐日蒸散量观测资料,采用Penman-Monteith模型(以下简称PM模型)对水稻蒸散量进行模拟,并对比模拟蒸散值与观测蒸散值。通过计算,对PM模型的可靠性进行验证。结果表明:(1)水层条件下PM模型的精度比干旱条件下高。(2)模拟值乘以作物系数后,与蒸散实际测量值更加接近。(3)通过敏感性分析可知,使用PM模型进行蒸散量模拟时,方程中各个因子取值的准确性对模拟结果的精确度有较大影响,计算时要合理确定各个因子值。(4)水层条件下稻田的蒸散量明显大于干旱条件下的蒸散量。  相似文献   

3.
参考作物蒸散量的多种计算方法及其结果的比较   总被引:54,自引:3,他引:51       下载免费PDF全文
分别用 FAO Penman- Monteith公式 (模型 1 )、FAO Penman 修正式 (模型 2 )和国内Penman修正式 (模型 3)计算了泰安和西峰两地的参考作物蒸散量 ,对 3种方法的计算结果进行了比较 .模型 1得到的参考作物蒸散量大于后 2种模型 ,导致不同模型计算偏差的原因是 3种模型各自选用了不同的辐射项和动力项计算式 ,且计算偏差随季节和地理条件而变 .建议计算区域参考作物蒸散量用模型 1 ,计算单站逐日参考作物蒸散量 3种模型都可用 .  相似文献   

4.
春小麦日蒸散规律的研究   总被引:1,自引:1,他引:1  
本研究利用称重式仪器——水力蒸发器,观测了不同天气状况、不同生育时期及浇水前、后一天内各时段春小麦的蒸散量。研究结果说明:春小麦夜间(20-08时)蒸散量较小或为负值;蒸散量从08时开始增加,到16时左右达最大值;16时或18时以后蒸散量开始减小,夜间02-06时达全天最低值。晴天春小麦的蒸散量高于阴天,以10至18时差距最大。春小麦灌水及降雨后蒸散量有所增加。且不同时段的蒸散量与气温及水力蒸发器地面温度呈二次曲线关系。  相似文献   

5.
基于修正的Penman-Monteith(P-M)模型,利用1980~2020年黄河源区的气象台站观测数据和陆-气间水热交换观测试验数据,计算出该区域的陆面参考蒸散量,分析了黄河源区蒸散量的时空演变特征,探讨了影响黄河源区蒸散量变化的原因。结果表明:(1)修正的P-M模型能较准确地估算黄河源区的参考蒸散量,与实际观测的相关系数在0.85以上。(2)黄河源区的蒸散量总体呈上升趋势,但在20世纪80年代中期和90年代中期均呈显著减少趋势;近年来,中部和西部地区的蒸散量呈减少趋势,而东部地区的蒸散量呈增加趋势。(3)黄河源区年蒸散量呈自东向西减小的分布特征,东、中、西部地区分别为473.5~516.0mm、437.6~473.5mm和386.3~437.6mm;四季蒸散量差异明显,夏季最大,春季和秋季次之,冬季最小。(4)黄河源区蒸散量随温度、风速和日照时数的增加而增大,随相对湿度和降水量的增大而减小。   相似文献   

6.
基于P-T模型估算雨养大豆田蒸散量   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2005—2007年涡度相关系统实测值和小气候观测资料,利用Priestley-Taylor (简称P-T) 模型对三江平原雨养大豆田5—10月的蒸散量进行模拟和分析。结果表明:P-T模型参数α采用常规值1.26时,大豆出苗前和生长期模拟值明显大于实测值,大豆收割后模拟值明显小于实测值,模型不能用于模拟大豆田蒸散量。大豆生长期内参数α与叶面积指数呈对数正相关关系;当饱和水汽压差较小时,参数α与其呈幂函数正相关关系,当饱和水汽压差较大时,参数α与其呈幂函数负相关关系。大豆出苗前参数α与太阳辐射呈正相关关系,与饱和水汽压差呈负相关关系;大豆收割后参数α与风速呈显著正相关关系。依据回归方程修正参数α后,多个用于检验模型模拟效果的统计量均表明:P-T模型对不同时期大豆田蒸散量的模拟精度明显提高,能够较好地估算大豆田蒸散量。总而言之,P-T模型必须修正参数α方可用于估算三江平原雨养大豆田蒸散量。  相似文献   

7.
马潇祎  范可 《大气科学》2023,(4):943-956
本文利用观测和再分析资料,分析了1961~2014年中国西北地区(35°N~50°N,75°E~95°E)夏秋季节干湿线性变化趋势特征,定量计算了蒸散量和降水量对干湿变化趋势的贡献,同时分析了其年代际变化特征及其相关的大尺度环流和水汽收支变化。结果表明,西北夏季和秋季干旱变率在四季中最大,是干旱最易发生季节。西北地区在1961~2014年夏秋季显著变湿,其中蒸散和降水在西北地区的线性变湿趋势中占主要作用,降水量的增加和蒸散量的减少对西北变湿都有正贡献,二者趋势总贡献率夏季为93.4%,秋季为67.5%。夏秋季西北干湿变化的年代际转折在1987年前后,自1987年后,夏季西北年代际变湿,主要受到蒸散量和降水量变化影响,地面风速减小所造成的蒸散量降低有利于该地区年代际变湿;西北地区水汽输送通量异常辐合导致其降水量增加。水汽诊断分析进一步表明,夏季降水量的增加主要来自于局地蒸发的增强,贡献率达到约80%,表明局地蒸发是降水的重要水汽源。此外,夏季水汽平流项为正值(即水汽通量辐合加强),有利于降水量增加,该贡献主要由与风速有关的动力学分量引起。而秋季,1987年后西北地区的净辐射通量和地面风速...  相似文献   

8.
渍水麦田土壤水分动态模型研究   总被引:13,自引:1,他引:13       下载免费PDF全文
根据土壤水分平衡原理,建立了一个反映土壤渍水、可与小麦生长模型耦合的土壤水分动态模型,尤其考虑了因地下水位较浅而引起的毛管上升水量和土壤导水率的变化对土壤含水量的影响。采用盆栽小麦水分试验资料验证了日蒸散量的模拟值,利用湖北荆州农业气象试验站和江苏金坛农业气象试验站的土壤水分历史资料对建立的模型进行了综合测试和验证,结果表明:蒸散量、地下水位和0~50 cm土壤含水量的模拟值与实测值具有较好的一致性,模型能可靠地预测多雨和渍水地区麦田土壤水分的变化动态  相似文献   

9.
非均匀陆面条件下区域蒸散量计算的遥感模型   总被引:23,自引:0,他引:23  
非均匀陆面条件下的区域蒸散计算是一个复杂的问题。文中首先在利用遥感资料求取地表特征参数 (如植被覆盖度、地表反照率等 )的基础上 ,建立了裸露地表条件下的裸土蒸发和全植被覆盖条件下植被蒸腾计算模型 ,然后结合植被覆盖度 (植被的垂直投影面积与单位面积之比 )给出非均匀陆面条件下的区域蒸散计算方法。实测资料验算表明该模型具有较高的计算精度。文章最后利用该模型对中国北方地区的蒸散量进行了计算 ,并对该研究区蒸散的特点进行了分析  相似文献   

10.
邵小路  姚凤梅  张佳华  李先华 《气象》2013,39(9):1154-1162
本文利用卫星遥感资料以及常规气象资料驱动基于地表净辐射、植被指数、平均气温和日温差的蒸散模型来估测日实际蒸散量,并与栾城站涡动相关法测量的实际蒸散作对比验证。定性分析了实际蒸散与各相关影响因子的时空变化规律;通过蒸散干旱指数(EDI)分析华北地区的干旱分布特点,并分别与PDSI指数和降水距平百分率作对比。结果表明:ET模型估测的蒸散值与实测值的相关性很好,其模拟精度对于大面积干旱监测的空间尺度上是可用的;EDI距平指数表征干旱分布的空间分辨率较高,且对旱情的指示和干旱程度的判定比较可靠。  相似文献   

11.
南京地区稻田蒸散的研究   总被引:1,自引:1,他引:1  
引进半经验模式计算稻田蒸散,仅需要常规气象资料和作物的叶面积资料即可较精确地估算农田蒸散,解决了用Penman-Monteith方法计算误差偏高以及需要风速梯度观测等在实际应用中存在的困难。通过对模式进行参数的敏感性分析,证实了模式的可靠性和可行性。分析稻田蒸散发现水稻一生有两个耗水高峰:拔节期和抽穗开花期,此时的气象条件最有利于水稻蒸散的进行。  相似文献   

12.
三江平原典型沼泽湿地蒸散量研究   总被引:2,自引:0,他引:2  
利用涡度相关技术对三江平原典型沼泽湿地蒸散量及其影响因子进行研究,结果表明沼泽湿地蒸散量时间变化特征明显。日出后蒸散量逐渐增加,12:00~13:00(北京时间)达到最大值,6~10月各月平均值分别为285.5、257.4、243.0、167.1和65.9W.m-2,各月总蒸散量分别为120.9、101.6、93.1、59.3和25.9mm。与同期降雨量相比,6~9月沼泽湿地水量发生亏缺,亏缺量分别为72.7、3.2、58.8和44.4mm。沼泽湿地蒸散量受环境因子影响强烈。蒸散量与净辐射呈显著线性正相关。蒸散量也随饱和水汽压差的增加而增加,但植物发育成熟后,当饱和水汽压差大于某一阈值(11hPa)时,饱和水汽压差的增加反而抑制了水分蒸散。另外,白天风速增加在一定程度上能够促进水分蒸散。  相似文献   

13.
蒸散量是内陆水循环的重要环节,探索西北干旱半干旱区气候因素对蒸散量的影响,有助于深入研究内陆水循环对气候变化的响应。本文利用玛纳斯河流域1964—2010年6个气象台站的日气温、风速、相对湿度等气候资料,通过Penman-Monteith公式估算玛纳斯河流域的参考作物蒸散量(RET),利用回归分析、Mann-Kendall等方法分析研究参考作物蒸散量的时空变化特征。结果表明:(1)玛纳斯河流域参考作物蒸散量空间差异明显,除石河子外南部绿洲区参考作物蒸散量均大于北部绿洲边缘区,季节变化趋势也较北部明显。从季节上来看,玛纳斯河流域参考作物蒸散量季节变化差异显著,夏季是参考作物蒸散量变化的主要贡献者,其次是秋季大于春季,冬季的变化最小。(2)南部绿洲区平均风速的减小是参考作物蒸散量减少的主要原因,北部绿洲边缘区相对湿度的增加是参考作物蒸散量减少的主要原因。  相似文献   

14.
大型称重式蒸渗仪测定的冬小麦农田的蒸散规律研究   总被引:5,自引:0,他引:5  
利用大型称重式蒸渗仪实测数据,对冬小麦蒸散耗水规律进行研究。结果表明:1)冬小麦的目蒸散量变化曲线呈单峰型,中午大,早晚小。蒸散量在分蘖期出现小峰值,此后逐渐降低,返青后又不断增大,在孕穗期土壤水分亏缺严重,作物蒸散量增加速率有所下降。2)Penman—Monteith法估算的实际蒸散量比蒸渗仪实测值略高,怛两者的相关...  相似文献   

15.
根据月平均气温、月降水量推算蒸散量   总被引:1,自引:0,他引:1  
因为从月平均气温、月平均降水量推算蒸散量的桑斯威特(Thornth-waite)公式适用范围比较小,假定降水量、蒸散量和最大水汽压成比例,可以求得适用于更大范围的经验公式。为了检验这些经验公式的精度,把从这些公式计算的蒸散量,P-E比与实测的蒸散量,气候状况等进行比较。  相似文献   

16.
以石羊河流域5个气象站点1960~2009年逐日气象资料为基础,从估算模型和统计角度计算分析了该流域参考蒸散量及蒸发皿蒸发量的变化趋势和变化原因。结果表明:过去50 a石羊河流域蒸散发呈增加趋势,个别站点达极显著水平(p<0.01),1960~2009年和1970~2009年不同时段的选择对分析结果有一定的影响。估算模型理论分析认为桑斯威特法计算的参考蒸散量变率主要由气温决定,蒸发皿蒸发量和彭曼蒙蒂斯公式计算的参考蒸散量变化则是辐射、气温、风速及空气饱和差共同作用的结果,而相关分析和突变检验的分析结果验证了上述结论,并得出过去50 a石羊河流域蒸发皿蒸发量和彭曼蒙蒂斯公式计算的参考蒸散量变化的主要决定因素是空气饱和差。  相似文献   

17.
黑河流域日蒸散发遥感估算研究   总被引:6,自引:2,他引:4       下载免费PDF全文
地表蒸散的估算在干旱半干旱区水资源研究中具有重要意义。利用NOAA/AVHRR遥感资料、NCEP再分析格点资料和气象站点资料,根据能量平衡模型和FAO-17 Penman公式,计算了研究区域内逐日蒸散发量;对于晴天,用遥感模型反演出瞬时蒸散,进而推算出日蒸散;同时用FAO-17 Penmen公式和气象资料,计算研究区域内的同一天的蒸散,利用气象资料计算得到的蒸散与遥感估算的蒸散的关系,估算非晴空日的蒸散,进而得到逐日蒸散发结果。与同类研究结果的比较表明:该方法能够估算逐日蒸散发,通过气象与遥感资料结合,提高了气象格点资料的空间分辨率,弥补了难以得到遥感逐日晴空资料的不足,同时也为流域内同类研究提供参考依据。  相似文献   

18.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

19.
北疆棉区棉花膜下滴灌蒸散规律研究   总被引:6,自引:0,他引:6  
通过对膜下灌溉技术下蒸散观测数据的分析,初步确定了棉花在整个生育期的蒸散量为500-600mm。在此基础上,分析了膜下灌溉技术对棉花产质量的影响。  相似文献   

20.
1充分供水条件下的蒸散量充分供水条件下的蒸散量ETm_0为:ETm_0=K_c·ET_0(1)式中K_c为作物系数;ET_0为标准蒸散量。1.1作物系数K_c的求算由于作物类型和土壤水分状况与参照面的不同,从而使作物的实际蒸散与标准蒸散有较大的差异。故把某一时段作物的实际蒸散与标准蒸散之比称为作物系数。即K_c=ETm_0/ET_0(2)式中ETm_0为作物实际蒸散量。鉴于ETm_0通常是在充分供水条件下测得的。如果考虑到土壤水分不足的限制,所以也可以把K_c看作相对蒸散。不同生育期作物系数的求算为K;一ET-。;/ET。;…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号