首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean—atmosphere—sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard—Oeschger events, may be internal instabilities of the climate system.  相似文献   

2.
The stability of the Atlantic meridional overturning circulation (MOC) is investigated for various climate scenario runs, using data from the CMIP3 archive of coupled atmosphere-ocean models. Apart from atmospheric feedbacks, the sign of the salt flux into the Atlantic basin that is carried by the MOC determines whether the MOC is in the single or multiple equilibria regime. This salt advection feedback is analyzed by diagnosing the freshwater and salt budgets for the combined Atlantic and Arctic basins. Consistent with the finding that almost all coupled climate models recover from hosing experiments, it is found that most models feature a negative salt advection feedback in their pre-industrial climate: freshwater perturbations are damped by this feedback, excluding the existence of a stable off-state for the MOC. All models feature enhanced evaporation over the Atlantic basin in future climates, but for a moderate increase in radiative forcing (B1 and 2 CO2 scenarios), there is a decrease of the fresh water flux carried by the MOC into the Atlantic (the deficit is made up by increased fresh water transport by the gyre circulation). In this forcing regime the salt advection feedback becomes less negative: for three models from an ensemble of eight it is positive in a 2 CO2 climate, while two models feature a positive feedback in the pre-industrial climate. For even warmer climates (A1B-equilibrium and 4 CO2) the salt feedback becomes more negative (damping) again. It is shown that the decrease in northward fresh water transport at 34°S by the MOC (in B1-equilibrium and 2 CO2) is due to a reduction of the inflow of intermediate waters relative to thermocline waters, associated with a robust shoaling of the MOC in future, warmer climates. In A1B and 4 CO2 climates northward freshwater transport increases again. The MOC keeps shoaling, but both intermediate and thermocline water masses freshen.  相似文献   

3.
Role of methane clathrates in past and future climates   总被引:13,自引:0,他引:13  
Methane clathrates are stable at depths greater than about 200 m in permafrost regions and in ocean sediments at water depths greater than about 250 m, provided bottom waters are sufficiently cold. The thickness of the clathrate stability zone depends on surface temperature and geothermal gradient. Average stability zone thickness is about 400 m in cold regions where average surface temperatures are below freezing, 500 m in ocean sediments, and up to 1,500 m in regions of very cold surface temperature (<-15 °C) or in the deep ocean. The concentration of methane relative to water within the zone of stability determines whether or not clathrate will actually occur. The geologic setting of clathrate occurrences, the isotopic composition of the methane, and the methane to ethane plus propane ratio in both the clathrates and the associated pore fluids indicate that methane in clathrates is produced chiefly by anaerobic bacteria. Methane occurrences and the organic carbon content of sediments are the bases used to estimate the amount of carbon currently stored as clathrates. The estimate of about 11,000 Gt of carbon for ocean sediments, and about 400 Gt for sediments under permafrost regions is in rough accord with an independent estimate by Kvenvolden of 10,000 Gt.The shallowness of the clathrate zone of stability makes clathrates vulnerable to surface disturbances. Warming by ocean flooding of exposed continental shelf, and changes in pressure at depth, caused, for example, by sea-level drop, destabilize clathrates under the ocean, while ice-cap growth stabilizes clathrates under the ice cap. The time scale for thermal destabilization is set by the thermal properties of sediments and is on the order of thousands of years. The time required to fix methane in clathrates as a result of surface cooling is much longer, requiring several tens of thousands of years. The sensitivity of clathrates to surface change, the time scales involved, and the large quantities of carbon stored as clathrate indicate that clathrates may have played a significant role in modifying the composition of the atmosphere during the ice ages. The release of methane and its subsequent oxidation to carbon dioxide may be responsible for the observed swings in atmospheric methane and carbon dioxide concentrations during glacial times. Because methane and carbon dioxide are strong infrared absorbers, the release and trapping of methane by clathrates contribute strong feedback mechanisms to the radiative forcing of climate that results from earth's orbital variations.Gordon J. MacDonald is Vice President and Chief Scientist of The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102.  相似文献   

4.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

5.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

6.
Understanding public perceptions of climate is critical for developing an effective strategy to mitigate the effects of human activity on the natural environment and reduce human vulnerability to the impacts of climate change. While recent climate assessments document change among various physical systems (e.g., increased temperature, sea level rise, shrinking glaciers), environmental perceptions are relatively under-researched despite the fact that there is growing skepticism and disconnect between climate science and public opinion. This study utilizes a socio-ecological research framework to investigate how public perceptions compared with environmental conditions in one urban center. Specifically, air temperature during an extreme heat event was examined as one characteristic of environmental conditions by relating simulations from the Weather Research and Forecast (WRF) atmospheric model with self-reported perceptions of regional and neighborhood temperatures from a social survey of Phoenix, AZ (USA) metropolitan area residents. Results indicate that: 1) human exposure to high temperatures varies substantially throughout metropolitan Phoenix; 2) public perceptions of temperature are more strongly correlated with proximate environmental conditions than with distal conditions; and 3) perceptions of temperature are related to social characteristics and situational variables. The social constructionist paradigm explains public perceptions at the regional scale, while experience governs attitude formation at the neighborhood scale.  相似文献   

7.
8.
肖洒  魏敏  邓帅  徐达  张晨琛 《气象》2019,45(7):1001-1008
为使数值模式适应异构架构在高性能计算领域的快速发展趋势,本文基于OpenACC语言,对气候模式BCC_AGCM3.0中动力框架三段程序段进行GPU加速优化试验。通过异步执行设置、循环内移、数据管理及向量参数化配置等方式,对模式中计算密集部分程序段进行GPU加速并行化,并进行了优化运行效率对比及正确性验证。试验结果表明,BCC_AGCM3.0模式中三段程序段GPU加速后效率提升均在3倍以上,BCC_AGCM气候模式全球涡度均方根相对误差控制在一定范围之内。加速方法及策略对于数值天气气候模式在异构环境下的移植与优化具有一定参考价值。  相似文献   

9.
Measurements of the surface radiation budgets for three surfaces—grass, soil and a cornfield—are used to evaluate the ‘heating coefficient’β, and its componentsβ (=dL /dR n ) andβ (=dL /dR n ). This resolution permits an analysis of the sensitivity of β to surface and atmospheric influences.β is shown, both theoretically and empirically, to be determined by surface properties. For grass and soil, the parameter functions as an index of surface desiccation.β values are large (even under clear conditions) and variable, accounting for part of the variance in β and the anomalously small and negative values reported in the literature.β values for cloudy conditions may be larger or smaller than those for clear skies. It is concluded that, unless a predictive procedure can be developed forβ , the Monteith and Szeicz model is of limited use for the routine estimation of net radiation.  相似文献   

10.
青藏高原对流层顶高度与臭氧总量及上升运动的耦合关系   总被引:3,自引:2,他引:3  
根据1979-2008年青藏高原地区14个探空站对流层项气压资料以及同期各标准等压面上的温度资料,分析了不同季节高原上空两类对流层顶高度与高空各层温度之间的关系;在此基础上,结合同期的NCEP/NCAR月平均再分析资料以及NASA提供的TOMS/SBUV月平均臭氧总量资料,分别讨论了高原上升运动以及高原臭氧总量与对流层顸高度的耦合关系。结果表明:高原第一(二)对流层顶高度全年处在300~200hPa(100hPa附近)高度,在季节变化、年际变化以及长期变化趋势上,两类对流层顸高度与各自对应高度层上的温度存在着密切的反相变化关系,当对流层顶高度偏高(低)时,相应高度上的温度偏低(高)。上升运动有助于两类对流层顶高度的抬升,尤其是当高空200(100)hPa附近有上升运动时,有利于第一(二)对流层项高度抬升。各季节高原臭氧总量与第二对流层顶高度均呈显著的负相关关系,当臭氧含量减少(增加)时,该对流层顶高度将偏高(偏低),近年来伴随着高原臭氧总量的减少,高原第二对流层顸高度出现了明显的抬升。  相似文献   

11.
Paleovegetation maps were reconstructed based on a network of pollen records from Australia, New Zealand, and southern South America for 18 000, 12000, 9000, 6000, and 3000 BP and interpreted in terms of paleoclimatic patterns. These patterns permitted us to speculate on past atmospheric circulation in the South Pacific and the underlying forcing missing line mechanisms. During full glacial times, with vastly extended Australasian land area and circum-Antarctic ice-shelves, arid and cold conditions characterized all circum-South Pacific land areas, except for a narrow band in southern South America (43° to 45°S) that might have been even wetter and moister than today. This implies that ridging at subtropical and mid-latitudes must have been greatly increased and that the storm tracks were located farther south than today. At 12000 BP when precipitation had increased in southern Australia, New Zealand, and the mid-latitudes of South America, ridging was probably still as strong as before but had shifted into the eastern Pacific, leading to weaker westerlies in the western Pacific and more southerly located westerlies in the eastern Pacific. At 9000 BP when, except for northernmost Australia, precipitation reached near modern levels, the south Pacific ridges and the westerlies must have weakened. Because of the continuing land connection between New Guinea and Australia, and reduced seasonality, the monsoon pattern had still not developed. By 6000 BP, moisture levels in Australia and New Zealand reached their maximum, indicating that the monsoon pattern had become established. Ridging in the South Pacific was probably weaker than today, and the seasonal shift of the westerlies was stronger than before. By 3000 BP essentially modern conditions had been achieved, characterized by patterns of high seasonal variability.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

12.
 The conditions of development of mid-latitude depressions (synoptic eddies) in the winter Northern Hemisphere mid-latitudes at the Last Glacial Maximum (LGM, 21 000 years ago) are very different from the present ones: this period is characterised by a general cooling of the extra-tropics, with massive ice sheets over the Northern Hemisphere continents and sea-ice extending very far south over the North Atlantic. The present work uses regression analysis to study the characteristics of the synoptic eddies in present-day and LGM climate simulations by the Atmospheric General Circulation Model (AGCM) of the UK Universities' Global Atmospheric Programme (UGAMP). In the LGM experiment, the structure of the Pacific eddies is similar to the present-day (PD) situation, but they are weaker. On the other hand, the Atlantic eddies show an increased zonal wavelength and a much shallower structure in the temperature and vertical wind perturbations. To understand the changes of these characteristics from present-day to LGM, we compare them to those computed for the most unstable modes of the corresponding mean flows, determined using a dry primitive equation model. A normal-mode stability analysis is carried both on zonally symmetric and asymmetric flows for each of the Northern Hemisphere storm-tracks. The changes in the most unstable normal modes found by both these analyses give a good account of changes in the structure of the perturbations as retrieved from the AGCM, suggesting that changes in the mean state (especially the temperature gradient) is the main driver of these changes. However in the case of the present-day Atlantic storm-track, the growth rate of these modes is found to be very low compared to the other cases. A complementary analysis evaluates the importance of non-modal growth, in the form of downstream development of perturbations, for each of the storm-tracks. This type of growth is found to be especially important in the case of the present-day Atlantic storm-track. Received: 29 September 1999 / Accepted: 17 November 1999  相似文献   

13.
We analyze a mini ensemble of regional climate projections over the CORDEX Africa domain carried out with RegCM4 model as part of the Phase I CREMA experiment (Giorgi 2013). RegCM4 is driven by the HadGEM2-ES and MPI-ESM global models for the RCP8.5 and RCP4.5 greenhouse gas and aerosol concentration scenarios. The focus of the analysis is on seasonal and intraseasonal monsoon characteristics. We find two prominent change signals. Over West Africa and the Sahel MPI produces a forward shift in the monsoon season in line with previous findings, and this shift is also simulated by the RegCM4. Furthermore, the regional model produces a widespread decrease of monsoon precipitation (when driven by both MPI and HadGEM) associated with decreased easterly wave activity in the 6–9 days regime and with soil moisture-precipitation interactions. South of the equator we find an extension of the dry season with delayed onset and anticipated recession of the monsoon and a narrowing and strengthening of the ITCZ precipitation band. This signal is consistent in all global and regional model projections, although with different spatial detail. We plan to enlarge this mini-ensemble as a further contribution to the CORDEX project to better assess the robustness of the signals found in this paper.  相似文献   

14.
A full global atmosphere-ocean-land vegetation model is used to examine the coupled climate/vegetation changes in the extratropics between modern and mid-Holocene (6,000 year BP) times and to assess the feedback of vegetation cover changes on the climate response. The model produces a relatively realistic natural vegetation cover and a climate sensitivity comparable to that realized in previous studies. The simulated mid-Holocene climate led to an expansion of boreal forest cover into polar tundra areas (mainly due to increased summer/fall warmth) and an expansion of middle latitude grass cover (due to a combination of enhanced temperature seasonality with cold winters and interior drying of the continents). The simulated poleward expansion of boreal forest and middle latitude expansion of grass cover are consistent with previous modeling studies. The feedback effect of expanding boreal forest in polar latitudes induced a significant spring warming and reduced snow cover that partially countered the response produced by the orbitally induced changes in radiative forcing. The expansion of grass cover in middle latitudes worked to reinforce the orbital forcing by contributing a spring cooling, enhanced snow cover, and a delayed soil water input by snow melt. Locally, summer rains tended to increase (decrease) in areas with greatest tree cover increases (decreases); however, for the broad-scale polar and middle latitude domains the climate responses produced by the changes in vegetation are relatively much smaller in summer/fall than found in previous studies. This study highlights the need to develop a more comprehensive strategy for investigating vegetation feedbacks.  相似文献   

15.
A series of experiments was done using an atmospheric general circulation model to simulate climates from full glacial time at 18 ka (thousands of years before the present) to the present at 3000 year intervals, and at 126 ka, the previous interglacial period. A modified Köppen climate classification was developed to aid in the interpretation of the results of the circulation model experiments. The climate classification scheme permits the characterization of eleven distinct seasonal temperature and precipitation regimes. For the modern climate, the modified classification agrees well with a classification of natural vegetation zones, and provides an easily-assimilated depiction of climate changes resulting from the varying boundary conditions in the past. At 18 ka, the time of glacial maximum, 45% of the land surface had climate classifications different from the present. At 126 ka, a time when northern hemisphere summer radiation was much greater than at present owing to changes in the date of perihelion and tilt of the earth's axis, the corresponding difference was 32%. For all experiments -3 to 18 ka and 126 ka - only 30% of the land surface showed no change in climate classification from the present. Core areas showing no change included the Amazon basin, the northern Sahara and Australia.  相似文献   

16.
 The diurnal range of surface air temperature (rT a ) simulated for present and doubled CO2 climates by the CSIRO9 GCM is analysed. Based on mean diurnal cycles of temperature and surface heat fluxes, a theory for understanding the results is developed. The cycles are described as the response to a diurnal forcing which is represented well by the diurnal mean flux of net shortwave radiation at the surface (SW) minus the evaporative (E) and sensible (H) fluxes. The response is modified by heat absorbed by the ground, and by the cycle in downward longwave (LW) radiation, but these effects are nearly proportional to the range in surface temperature. Thus in seasonal means, rT a is approximately given by SWEH divided by 6 W m-2/°C. A multiple regression model for (rT a ) is developed, based on quantities known to influence SW, E and H, and applied to both spatial variation in seasonal means, and day-to-day variation at a range of locations. In both cases, rT a is shown to be influenced by cloud cover, snow extent and wind speed. It is influenced by soil moisture, although this effect is closely tied to that of cloud. In seasonal means rT a is also well correlated with precipitable water, apparently because of the latter’s influence on E+H. The regression model describes well the spatial variation in the doubled CO2 change in rT a . The annual mean change in rT a over land on doubling CO2 was −0.36 °C, partly because of a decrease in the mean diurnal forcing (as defined in the theory), but also apparently because of the effect of nonlinearity in T s of the upward longwave emission. A diagnostic radiation calculation indicates that the CO2 and water vapour provide a small increase in rT a through the downward LW response, which partially counters a decrease due to a reduction of SW by the gases. Received: 8 November 1995 / Accepted: 3 January 1997  相似文献   

17.
An atmospheric general circulation model, the NCAR CCM, has been used to investigate the possible effects that reduced Gulf of Mexico sea surface temperatures (SST) could have on regional and hemispheric climates. 18O records and terrestrial evidence indicate at least two major glacial meltwater discharges into the Gulf of Mexico subsequent to the last glacial maximum. It is probable that these discharges reduced Gulf of Mexico SST. We have conducted three numerical experiments, with imposed gulf-wide SST coolings of 3°C, 6°C, and 12°C, and find in all three experiments significant reductions in the North Atlantic storm-track intensity, along with a strong decrease in transient eddy water vapor transport out of the Gulf of Mexico. Surface pressures are higher over the North Atlantic, indicating a reduction of the climatological Icelandic low. The region is generally cooler and drier, with a reduction in precipitation that agrees well with evidence from Greenland ice cores. Other statistically significant changes occur across the Northern Hemisphere, but vary between the three experiments. In particular, warmer, wetter conditions are found over Europe for both the 6°C and 12°C SST reductions, but cooler conditions are found for the 3°C reduction. This indicates a dependence, in both the sign and magnitude of the model response, on the magnitude of the imposed SST anomaly. The results suggest that the present-day North Atlantic storm track is dependent on warm Gulf of Mexico SST for much of its intensity. They also suggest that meltwater-induced coolings may help account, in part, for some of the climatic oscillations that occurred during the last glacial/interglacial transition.  相似文献   

18.
19.
The atmosphere?Cocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most suited AOGCMs for Greenland climate simulation are then selected on the basis of comparison between the 1970?C1999 outputs of the Climate of the twentieth Century experiment (20C3M) and reanalyses (ECMWF, NCEP/NCAR). This comparison indicates that the representation quality of surface parameters such as temperature and precipitation are highly correlated to the atmospheric circulation (500?hPa geopotential height) and its interannual variability (North Atlantic oscillation). The outputs of the three most suitable AOGCMs for present-day climate simulation are then used to assess the changes estimated by three IPCC greenhouse gas emissions scenarios (SRES) over the GrIS for the 2070?C2099 period. Future atmospheric circulation changes are projected to dampen the zonal flow, enhance the meridional fluxes and therefore provide additional heat and moisture to the GrIS, increasing temperature over the whole ice sheet and precipitation over its northeastern area. We also show that the GrIS surface mass balance anomalies from the SRES A1B scenario amount to ?300?km3/year with respect to the 1970?C1999 period, leading to a global sea-level rise of 5?cm by the end of the 21st century. This work can help to select the boundaries conditions for AOGCMs-based downscaled future projections.  相似文献   

20.
Spatial climate models were developed for México and its periphery (southern USA, Cuba, Belize and Guatemala) for monthly normals (1961–1990) of average, maximum and minimum temperature and precipitation using thin plate smoothing splines of ANUSPLIN software on ca. 3,800 observations. The fit of the model was generally good: the signal was considerably less than one-half of the number of observations, and reasonable standard errors for the surfaces would be less than 1°C for temperature and 10–15% for precipitation. Monthly normals were updated for three time periods according to three General Circulation Models and three emission scenarios. On average, mean annual temperature would increase 1.5°C by year 2030, 2.3°C by year 2060 and 3.7°C by year 2090; annual precipitation would decrease ?6.7% by year 2030, ?9.0% by year 2060 and ?18.2% by year 2090. By converting monthly means into a series of variables relevant to biology (e. g., degree-days > 5°C, aridity index), the models are directly suited for inferring plant–climate relationships and, therefore, in assessing impact of and developing programs for accommodating global warming. Programs are outlined for (a) assisting migration of four commercially important species of pine distributed in altitudinal sequence in Michoacán State (b) developing conservation programs in the floristically diverse Tehuacán Valley, and (c) perpetuating Pinus chiapensis, a threatened endemic. Climate surfaces, point or gridded climatic estimates and maps are available at http://forest.moscowfsl.wsu.edu/climate/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号