首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2013,26(5):327-351
A geological study carried out in the southern part of the Larderello geothermal area (Northern Apennines) provides new information on the development mechanism and timing of the earlier extensional structures that formed during the Miocene post-collisional tectonics which affected the orogen. Staircase low-angle normal faults (LANFs) affected a multilayered thickened upper crust after the collisional stage, producing the lateral segmentation of the Tuscan Nappe, the deeper non-metamorphic tectonic unit of the Northern Apennines in the Tuscan area. The tectonic history recorded in two Tuscan Nappe discontinuous bodies revealed that the LANFs took place during the Middle–Late Miocene, displacing collisional structures developed from the Late Oligocene. These Tuscan Nappe bodies are delimited by detachment faults located at the base, within the Tuscan evaporites, and at the top within the Ligurian Units. Their western and eastern margins coincide with east-dipping ramps. These structures and the Tuscan Nappe bodies were later dissected by Pliocene–Quaternary high-angle normal faults. The reconstructed deformation history implies that the Tuscan Nappe bodies are extensional horses developed through an earlier asymmetrical east-dipping extensional duplex system, involved in block faulting during the later, Pliocene-Quaternary, stage of extension.  相似文献   

2.
The tectonic evolution of the Mt Amiata volcano-geothermal area is under discussion. Some authors state that this region, as well as the hinterland of the Northern Apennines, were affected by compression from the Cretaceous to the Quaternary. In contrast, most authors believe that extension drove the tectonic evolution of the Northern Apennines from the Early Miocene to the Quaternary. Field data, seismic analyses and borehole logs have been integrated in order to better define the structural features of the continental crust in the Mt Amiata geothermal area. In this paper I propose the hypothesis that the structure of the crust in the Mt Amiata volcano-geothermal area derives from two main geological processes: (1) contractional tectonics related to the stacking of the Northern Apennines (Cretaceous–Early Miocene), (2) subsequent extensional collapse of the hinterland of the mountain chain, and related opening of the Northern Tyrrhenian Sea (Early Miocene–Quaternary). Compressional and extensional structures characterise the Mt Amiata region, although extensional structures dominate its geological framework. In particular the extension produced: (a) Middle-Late Miocene boudinage of the previously stacked tectonic units; (b) Pliocene–Quaternary normal faulting which favoured the emplacement of a magmatic body in the middle-upper crust; and (c) the eruption of the Mt Amiata volcano, which gave rise to an acid and intermediate volcanic complex (0.3–0.19 Ma). The extension produced the space necessary to accommodate the Middle-Late Miocene marine and continental sediments. Pliocene and Quaternary normal and transtensional faults dissected the previous structures and influenced the Early Middle Pliocene marine sedimentation within the structural depressions neighbouring the Mt Amiata volcano. The magmatic body was emplaced at depth (about 6–7 km) during the Pliocene extension, and produced the eruption of the Mt Amiata volcano during the Late Pleistocene. This gave rise to local uplift, presently reaching about 3,000 m, as well as a negative Bouguer anomaly (−16 mgal), both centred on the Mt Amiata area. The crustal dome shows a good correspondence with the convex shape of the regional seismic marker known as the K-horizon, which corresponds to the 450°C isotherm, and the areas with greatest heat flow. This is probably a consequence of the above-cited magmatic body presently in the process of solidification. A Late Pleistocene eruption occurred along a crustal fissure striking N50° (Mt Amiata Fault), which crosscuts the crustal dome. Hydrothermal circulation, proven by the occurrence of thermal springs and gas vents (mainly CO2 and H2S), mainly occurs along the Mt Amiata Fault both in the northeastern ans southwestern sides of the volcano.  相似文献   

3.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Middle–Late Pleistocene tectonic activity has been inferred through studies on travertine deposits exposed in a tract of the hinterland Northern Apennines. A detailed study on the relationships between tectonics and travertine deposition coupled with 230Th/234U age determination of travertines at Cava Oliviera quarry, located close to Serre di Rapolano village (southern Tuscany, Northern Apennines), allowed us to recognise Pleistocene faults, whose activity has been referred to 157–24 ka, at least. Travertine deposition was tectonically controlled by WSW-ENE striking, oblique and normal faults, associated to a main fault (named as the Violante Fault). This structure dissected a regional normal fault (known as the Rapolano Fault) Early–Middle Pliocene in age, which bounded the eastern side of the Pliocene Siena Basin, and gave rise to space accommodation for clayey and sandy marine sediments. Hydrothermal circulation (and related travertine deposition) was favoured by the damaging enhancement due to the fault–fault intersection. Tectonic activity has been also documented by deformation recorded by travertines, which suggest a main tectonic event between 64 ± 5 and 40 ± 5 ka. The tectonic activity described for the study area agrees with the Quaternary tectonic evolution documented in the surrounding areas (e.g. Mt. Amiata and Mt. Vulsini), as well as the Tyrrhenian margin of the Central Apennines, indicating that a widespread tectonic activity affected the inner part of the Apennines until the latest Quaternary.  相似文献   

5.
This paper discusses the possible influence of syn-sedimentary structures on the development of orogenic structures during positive tectonic inversion in the inner Northern Apennines (Italy). Examples from key areas located in southern Tuscany provided original cartographic, structural and kinematics data for Late Oligocene-Early Miocene thrusts, organized in duplex systems, verging in the opposite direction of the foreland propagation (back-thrusts), which affected the Late Triassic-Oligocene sedimentary succession of the Tuscan Domain, previously affected by pre-orogenic structures. These latter consist of mesoscopic-to cartographic-scale Jurassic syn-sedimentary normal faults and extensional structures, which gave rise to effective stratigraphic lateral variation and mechanical heterogeneities. Structural analysis of both syn-sedimentary faults and back-thrusts were therefore compared in order to discuss the possible role of the pre-existing anisotropies in influencing the evolution of the back-thrusts. As a result, it can be reasonably proposed that back-thrusts trajectories and stacking pattern were controlled by relevant syn-sedimentary normal faults; these latter were reactivated, in some cases, if properly oriented. Such an issue adds new inputs for discussing the potential role of structural inheritance during tectonic inversions, and helps to better understand the processes suitable for the development of back-thrusts in the inner zones of orogenic belts, as it is the case of the inner Northern Apennines.  相似文献   

6.
燕山西段及北京西山晚中生代逆冲构造格局及其地质意义   总被引:18,自引:0,他引:18  
燕山西段及北京西山晚中生代逆冲构造集中分布于三个NE向带状区域中,三个带状区域的间隔约为60km,延伸长度自东向西依次减小,呈现出明显的逆冲构造发育的三角形区域。三角形区域的北界为“内蒙地轴”南缘断裂西段,南西界与中元古代早期古盆地构造边界一致,东南部边界则与华北克拉通基底新太古代-古元古代中部碰撞造山带的东部边界大致吻合。逆冲构造具有基底卷入的厚皮构造与盖层内部的薄皮构造共存的构造属性,上盘运动方向总体指向NW,逆冲构造变形主要发生在140~130Ma。逆冲后伸展构造变形以发育在主要逆冲构造后侧为主,并利用先存构造薄弱带。先存构造薄弱带在有利区域构造应力和其他影响因素的作用下导致的构造活化,可能是燕山板内构造变形的重要机制之一。主要逆冲变形前后均有大规模岩浆活动的构造-岩浆时空组合表明,收缩构造造成地壳加厚及由此引发的深部地壳重熔,难以作为统一的机制对这些特征进行合理阐释,需要有其他方式的深部热物质与能量的参与。北京西山霞云岭—长操、教军场—大安山以及马兰—胡林等逆冲断层,是一个统一的大规模的逆冲构造的不同组成部分,具典型、连续的断坪-断坡结构,它形成于髫髻山组(148~146Ma)之后、南窖闪长岩(128Ma)侵入之前,而不是“印支期(或更早)”,它与南大寨—八宝山逆冲构造构成北京西山晚中生代逆冲构造格局。区域性的NW-SE向收缩构造作用及南大寨—八宝山逆冲构造上覆岩席的构造加载,可能是北京西山的蓝晶石带和硬绿泥石带为代表的高压动力变质作用的基本构造原因。  相似文献   

7.
8.
会昌浅层次热隆伸展构造与铀成矿   总被引:2,自引:2,他引:2  
蔡煜琦  陈跃辉 《铀矿地质》1997,13(5):257-263
本文运用伸展构造理论对河草坑铀矿田的构造特征进行探讨,厘定出会昌浅层次热隆伸展构造是由伸展构造核、环形剥离断层系和断陷红盆所组成。对会昌浅层次热隆伸展构造的形成与演化作了研究。论述了伸展构造与区域铀成矿的关系,认为剥离断层活动为区域铀矿化准备了有利的构造环境;构造-岩浆作用是导致区内铀矿化和造成不同类型铀矿化特征基本相似的根本原因。  相似文献   

9.
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.  相似文献   

10.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

11.
Structural analysis performed in the southern sector of the Apuan Alps Metamorphic Complex (AAMC) and on the overlaying Tuscan Nappe (TN) pointed out a structural evolution much more complex than that outlined till now. The comparison between the structural evolutions of the two tectonic units could provide new important constraints on the tectonic evolution of the whole belt. The two tectonic units recorded different tectonic evolution during the first stages of compression, while they shared the same deformation history later after the Tuscan Nappe overlapped the AAMC. The coupled tectonic units have been then deformed by two systems of folds, in a compressive tectonic regime. Extensional tectonics affected the units later, at upper crustal levels. To cite this article: R. Carosi et al., C. R. Geoscience 334 (2002) 339–346.  相似文献   

12.
变质核杂岩研究进展   总被引:9,自引:1,他引:8  
变质核杂岩是大陆流变伸展的重要表现形式。在近20年的国际大陆动力学研究中,变质核杂岩与伸展构造是一个方兴未艾的热点课题。在大量文献资料调研和作者科研实践的基础上,对变质核杂岩与伸展构造的研究现状进行了综述,分析了变质核杂岩的几何学、运动学、年代学特征、拆离断层特征、形成的大地构造背景与成矿关系等,对变质核杂岩基本特征及判别标志进行了归纳总结。同时,对变质核杂岩的热点争论问题,如变质核杂岩是否一定存在巨厚地壳柱被切失的问题、变质核杂岩形成过程中岩浆作用与伸展作用的主从关系问题、低角度拆离断层的成因等进行了讨论,并提出自己的认识。  相似文献   

13.
The Umbria-Marche foreland fold-and-thrust belt in the northern Apennines of Italy provides excellent evidence to test the hypothesis of synsedimentary-structural control on thrust ramp development. This orogenic belt consists of platform and pelagic carbonates, Late Triassic to Miocene in age, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly active from Jurassic through Late Cretaceous-Paleogene time, resulted in significant lateral thickness variability within the related stratigraphic sequences. By Late Miocene time the sedimentary cover was detached from the underlying basement and was deformed by east-verging folds and west-dipping thrusts. Two restored balanced cross sections through the southernmost part of the belt show a coincidence between the early synsedimentary normal faults and the late thrust fault ramps. These evidences suggest that synsedimentary tectonic structures, such as faults and the related lithological lateral changes, can be regarded as mechanically important controlling factors in the process of thrust ramp development during positive tectonic inversion processes.  相似文献   

14.
The Umbria-Marche-Sabina foreland fold and thrust belt (Northern Apennines, Italy) provides excellent test-cases for the hypothesis of ancient syndepositional structural features controlling thrust ramp development. The sedimentary cover, Late Triassic to Miocene in age, is made of platform and pelagic carbonates, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly during the Jurassic and the Late Cretaceous-Palaeogene, determined sensible lateral thickness variations within the relative sequences. By late Miocene the sedimentary cover was detached from its basement along a mainly evaporitic horizon, and was deformed by means of eastward-verging folds and thrusts.
In order to locate the points where thrust ramps branch-off the basal detachment, both line-length and equal-area techniques were used in the construction of a balanced cross-section through three major fault-related folds in southeastern Umbria. The nucleation of thrust ramps was controlled by the occurrence of Jurassic and Cretaceous-Palaeogene synsedimentary normal faults. These interrupted the lateral continuity of the evaporitic unit (the Late Triassic Anidriti di Burano Fm.) at the base of the sedimentary cover, and acted as obstacles to the eastward propagation of the thrust system, giving rise to major folds which originated from tip-line folding processes.
Therefore, the inferred relationships between ancient normal faults and late thrusts indicate that synsedimentary tectonic structures and the related lateral stratigraphic variations can be envisaged as mechanically important perturbations, which effectively control the nucleation and development of thrust ramps.  相似文献   

15.
张进江  黄天立 《地球科学》2019,44(5):1705-1715
简述了大陆伸展构造的研究历史,并从基本概念、构造样式、变形机制和动力背景等方面对大陆伸展构造进行了综述.伸展是大陆构造一种主要类型,并以正断层为主形成多种构造样式,如地堑、裂谷、拆离断层和变质核杂岩等.大陆伸展的变形机制包括纯剪切、简单剪切及分层剪切模式,并由此产生对称与非对称构造.大陆伸展构造的地表表现形式主要为裂谷或变质核杂岩,两者的形成主要取决于岩石圈的流变学结构.大陆伸展的动力学背景主要包括地幔柱上涌、俯冲板片反转与俯冲带后撤、增厚地壳的重力垮塌以及走滑体系的派生拉张等.  相似文献   

16.
The Larderello geothermal field is located in the Inner Northern Apennines, in an area which has been subject to extension since the Early Miocene. The latest extensional episode (Pliocene–Present) has resulted in the formation of NW-trending, NE-dipping listric normal faults, whose geometry is controlled down to 3 km by borehole data. In this paper, we integrate a new interpretation of seismic reflection lines with existing seismic, field, and borehole data to analyse the relations among listric normal faults, the top of the brittle–ductile transition, and the migration of geothermal fluids.In accordance with previous interpretations, we consider the strong reflector (K-horizon) marking the top of the reflective mid-lower crust, and located at a depth of 3–5 km in the geothermal area, to represent the top of the brittle–ductile transition. Its reflectivity most probably derives from the presence of overpressured fluids. We identify three main NW-trending, NE-dipping extensional brittle shear zones, showing listric geometry and soling out in the vicinity of the K-horizon. The latter appears to be dislocated in correspondence of the soling out of the shear zones. These shear zones, because of the associated intense fracturing, represent the most natural channels of upward migration of geothermal fluids from the magmatic sources located below the K-horizon.We suggest that these two conclusions—that listric normal faults root at or near the brittle–ductile transition, and that they act as preferential upward migration paths for magmatic fluids—may be of general validity for geothermal fields located in extensional settings.  相似文献   

17.
In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multi-channel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a ~80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a poly-phasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa–Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.  相似文献   

18.
The main steps of the sedimentary evolution of the west Lombardian South Alpine foredeep between the Eocene and the Early Miocene are described. The oldest is a Bartonian carbonate decrease in hemipelagic sediments linked with an increase in terrigenous input, possibly related to a rainfall increase in the Alps. Between the Middle Eocene and the early Chattian, a volcanoclastic input is associated with an extensional tectonic regime, coeval with magma emplacement in the southern-central Alps, and with volcanogenic deposits of the European foredeep and Apennines, suggesting a regional extensional tectonic phase leading to the ascent of magma. During Late Eocene to Early Oligocene, two periods of coarse clastic sedimentation occurred, probably controlled by eustasy. The first, during Late Eocene, fed by a local South Alpine source, the second, earliest Oligocene in age, supplied by the Central Alps. In the Chattian, a strong increase in coarse supply records the massive erosion of Central Alps, coupled with a structures growth phase in the subsurface; it was followed by an Aquitanian rearrangement of the Alpine drainage systems suggested by both petrography of clastic sediments and retreat of depositional systems, while subsurface sheet-like geometry of Aquitanian turbidites marks a strong decrease in tectonic activity.  相似文献   

19.
陶明信 《地质通报》2010,29(203):297-304
重点研究了吐哈盆地构造单元的类型、构造属性及其与构造反转之间的关系等相关问题。吐哈盆地的构造单元可归为2种不同类型的体系:坳陷/隆起-凹陷/凸起类型的体系和构造带类型的体系。前者为沉积构造单元,具有同沉积构造的属性,可代表盆地形成时期的伸展性结构与构造;后者则为变形构造单元,具有“后生或次生”构造的属性,反映或代表了后期的构造反转。吐哈盆地“东西分块”应是同沉积期构造格局的表象,“南北分带”则主要是后期挤压与构造反转的结果。由此也进一步证明,吐哈原型盆地属伸展性盆地,后期则因挤压改造而发生了构造反转。前述各种特征则可能是此类构造反转盆地所具有的特殊的地质构造现象。  相似文献   

20.
香花岭岩浆底辟伸展构造及其控矿的研究   总被引:5,自引:0,他引:5  
香花岭穹隆是一个岩浆底辟伸展构造,它的结构与变质核杂岩、剥离断层的结构相似,由核部、滑动系统及盖层构造三部分组成,核部为隐伏花岗岩体和寒武系变质岩系。滑动系统为隐伏岩体与其上覆盖层之间的高温韧性剪切带和沿泥盆系与寒武系之间的不整合面发育的剥离断层。盖层构造为发育于泥盆系一石炭系中的阶梯状缓倾斜正断层和大量层间滑脱断层,香花岭岩浆底辟伸展构造是在区域伸展作用的背景下,由岩浆底辟上隆,并引起上覆盖层下滑而形成的。香花岭锡、铬、锌多金属矿的矿田、矿床及矿体构造都受该伸展构造控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号