首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   

2.
Changes in the normal mode energetics of the general atmospheric circulation are assessed for the northern winter season (DJF) in a warmer climate, using the outputs of four climate models from the Coupled Model Intercomparison Project, Phase 3. The energetics changes are characterized by significant increases in both the zonal mean and eddy components for the barotropic and the deeper baroclinic modes, whereas for the shallower baroclinic modes both the zonal mean and eddy components decrease. Significant increases are predominant in the large-scale eddies, both barotropic and baroclinic, while the opposite is found in eddies of smaller scales. While the generation rate of zonal mean available potential energy has globally increased in the barotropic component, leading to an overall strengthening in the barotropic energetics terms, it has decreased in the baroclinic component, leading to a general weakening in the baroclinic energetics counterpart. These global changes, which indicate a strengthening of the energetics in the upper troposphere and lower stratosphere (UTLS), sustained by enhanced baroclinic eddies of large horizontal scales, and a weakening below, mostly driven by weaker baroclinic eddies of intermediate to small scales, appear together with an increased transfer rate of kinetic energy from the eddies to the zonal mean flow and a significant increase in the barotropic zonal mean kinetic energy. The conversion rates between available potential energy and kinetic energy, C, were further decomposed into the contributions by the rotational (Rossby) and divergent (gravity) components of the circulation field. The eddy component of C is due to the conversion of potential energy of the rotational adjusted mass field into kinetic energy by the work realized in the eddy divergent motion. The zonal mean component of C is accomplished by two terms which nearly cancel each other out. One is related to the Hadley cell and involves the divergent component of both wind and geopotential, while the other is associated to the Ferrel cell and incorporates the divergent wind with the rotationally adjusted mass field. Global magnitude increases were found in the zonal mean components of these two terms for the warmer climate, which could be the result of a strengthening and/or widening of both meridional cells. On the other hand, the results suggest a strengthening of these conversion rates in the UTLS and a weakening below, that is consistent with the rising of the tropopause in response to global warming.  相似文献   

3.
Large-eddy simulations of the convective boundary layer are compared over hilly versus flat surfaces. Moderate values for the height and horizontal spacing of the hills were selected. Thermally-direct hill-valley circulations are induced by the uneven terrain, accounting for a significant fraction of the resolved energy in the boundary-layer eddies. The probability of upward eddy motion reaches up to 70% over the hilltops and down to 15% over the valleys. Above-average values of both subgrid scale turbulent kinetic energy and upward eddy heat transport are found above the higher terrain. Horizontal spectra of vertical motion are strongly biased toward the horizontal scales of the terrain. Vertical profiles of atmospheric variables obtained by horizontal averaging, however, exhibit no significant differences between hilly and flat terrain simulations.  相似文献   

4.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

5.
Summary Diagnostic time-mean budgets of energy and water are evaluated in many atmospheric process studies. The errors of budget-derived quantities like sub-gridscale fluxes or diabatic heating are governed by the errors of the budgets. Here we consider 3D-budgets on the meso-β scale over Europe. They are compiled from analyses of state quantities available from forecast centres. In the present study we found that the mandatory 6 hours sampling interval between synoptic observations is the main error source for routine time-mean budgets. The errors have been quantified (i) by first sampling forecast data of the German Europamodell every 5 minutes and averaging them over 12 hours (reference budget), and (ii) by sampling the same data only every 6 hours and averaging these also over 12 hours (routine budget). With this method we find that routine budgets in single atmospheric meso-β scale columns show relative random errors of typically 200% and systematic errors of up to 20%, exclusively due to undersampling. Thus routine budgets, if applied to specific days at individual locations, cannot be expected to yield useful results, except perhaps for cases with extremely strong signal. Compositing over several hundreds of columns with similar weather reduces the random budget error down to about 50%; this seems to be the best one can achieve for routine budgets. The systematic error of some budget quantities is caused by a correlation between the time of occurence of certain processes (mainly convection) and the sampling times. While this error cannot be reduced through compositing, we find that it can be crudely estimated by using different time averaging methods. As application for this method we determine sub-gridscale budget quantities over the BALTEX catchment (August-September 1995) for an ensemble of convectively active and an ensemble of rain-active columns. For the ensemble mean profiles we find, in terms of the diagnosed sub-gridscale test quantities diabatic heating and vertical moist enthalpy flux divergence, that their accuracy is sufficient to detect statistically significant differences between both ensembles. The diabatic heating is about the same for both ensembles, while the flux divergence in the convective ensemble is about three times as large as in the rain ensemble. Received November 7, 2001 Revised April 4, 2001  相似文献   

6.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   

7.
Parametrisations of meridional energy and moisture transport used in zonally averaged climate models are validated using reanalysis data and results from a doubling CO2-experiment from a general circulation model. Global meridional fluxes of moisture and sensible heat are calculated by integrating surface and top-of-the-atmosphere vertical fluxes from one pole to the other. The parametrisations include an eddy-diffusion term, representing down-gradient transport of specific humidity and temperature due to the transient atmospheric eddies at mid- and high latitudes, and simple representations of the mean meridional circulation. Qualitative and quantitative agreement between the increased hydrological cycle in the 2×CO2-run from the GCM and the parametrisation is found. The performance for the sensible heat flux shows larger differences to the GCM results, particularly at low latitudes. Seasonal variations of the moisture and sensible heat transport are well captured by parametrisations including the influence of the mean meridional circulation. Interannual variability cannot be simulated. An examination of the parametrisations on different spatial scales suggests that they should not be used for small scales. Furthermore, two closures for the zonal distribution of precipitation were examined. They are used in zonally averaged atmosphere models coupled to an ocean model with different ocean basins at one latitudinal belt. An assessment of both the reanalysis data and the GCM results shows that both closures exhibit very similar behaviour and are valid in the long-term mean and seasonal cycle. Interannual variability is not captured well. They become invalid for spatial scales smaller than 10. Received: 30 November 1998 / Accepted: 4 July 1999  相似文献   

8.
使用NCEP/NCAR40年(1958~1997年)月平均再分析资料,通过动力学论断研究了大气斜压/正压运动动能的变化及其相互转换,分析了亚洲季风变动与这两种动能变化的联系。指出:季风区大气运动动能的组成和变化具有独特的特征。冬季风时期大气斜压运动动能与正压运动动能具有正相关线性关系,斜压运动能向正压运动动能转换;春、秋季无论是东亚还是印度季风区斜压运动动能与正压运动动能之间转换都处于极小值,只是  相似文献   

9.
This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000–2009, 2046–2065 and 2081–2100, using the period of 1962–1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000–2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.  相似文献   

10.
The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.  相似文献   

11.
North Atlantic decadal regimes in a coupled GCM simulation   总被引:7,自引:0,他引:7  
 The non-stationarity of the North Atlantic atmosphere-ocean coupling is investigated utilizing a long time integration of a coupled atmosphere-ocean general circulation model (GCM) and a consistent atmospheric experiment forced by the climatological sea surface temperature (SST) of the coupled GCM. The temporal behavior of the North Atlantic Oscillation (NAO) is non-stationary with two different decadal regimes being identified: (a) phases with enhanced (active) low-frequency variability of the NAO index are characterized by regional modes with a baroclinic Pacific-North America (PNA) and a dominant barotropic North Atlantic pattern; (b) in phases with reduced (passive) low-frequency variability a global mode connects tropics and midlatitudes. The characteristic space scales are similar in the coupled and the consistent atmospheric experiment; the time scales of the atmospheric eigenmodes are modified by ocean dynamics. In the active (passive) phase the corresponding atmospheric mode is reinforced by the North Atlantic (tropical Pacific) SST. Received: 15 September 2000 / Accepted: 30 March 2001  相似文献   

12.
Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.  相似文献   

13.
本文利用多年月平均资料计算了北半球中高纬月平均环流正压、斜压动能的年变化特征。结果表明无论正压、斜压动能都具有明显的年变化,而且两者的变化趋势也是一致的,但是正压动能要比斜压动能对总动能的贡献大得多。环流异常具有相当正压的垂直结构。有关结论可为长期数值预报模式的简化提供依据。  相似文献   

14.
In the existing studies on the atmospheric energy cycle, the attention to the generation of available potential energy (APE) is restricted to its global mean value. The geographical distributions of the generation of APE and its mechanism of formation are investigated by using the three-dimensional NCEP/NCAR diabatic heating reanalysis in this study. The results show that the contributions from sensible heating and net radiation to the generation of zonal and time-mean APE (Gz) are mainly located in high and middle latitudes with an opposite sign, while the latent heating shows a dominant effect on Gz mainly in the tropics and high latitudes where the contributions from the middle and upper tropospheres are also contrary to that from the low troposphere. In high latitudes, the Gz is much stronger for the Winter Hemisphere than for the Summer Hemisphere, and this is consistent with the asymmetrical feature shown by the reservoir- of zonal and time-mean APE in two hemispheres, which suggests that the generation of APE plays a fundamental role in maintaining the APE in the global atmospheric energy cycle. The same contributions to the generation of stationary eddy APE (GSE) from the different regions related to the maintenance of longitudinal temperature contrast are likely arisen by different physics. Specifically, the positive contributions to GSE from the latent heating in the western tropical Pacific and from the sensible heating over land are dominated by the heating at warm regions, whereas those from the latent heating in the eastern tropical Pacific and from the sensitive heating over the oceans are dominated by the cooling at cold regions. Thus, our findings provide an observational estimate of the generation of eddy APE to identify the regional contributions in the climate simulations because it might be correct for the wrong reasons in the general circulation model (GCM). The largest positive contributions to the generation of transient eddy APE (GTE) are found to be at middle latitudes in the middle and upper tropospheres, where reside the strong local contributions to the baroclinic conversion from transient eddy APE to transient eddy kinetic energy and the resulting transient eddy kinetic energy.  相似文献   

15.
Nested Limited-Area Models require driving data to define their lateral boundary conditions (LBC). The optimal choice of domain size and the repercussions of LBC errors on Regional Climate Model (RCM) simulations are important issues in dynamical downscaling work. The main objective of this paper is to investigate the effect of domain size, particularly on the larger scales, and to question whether an RCM, when run over very large domains, can actually improve the large scales compared to those of the driving data. This study is performed with a detailed atmospheric model in its global and regional configurations, using the “Imperfect Big-Brother” (IBB) protocol. The ERA-Interim reanalyses and five global simulations are used to drive RCM simulations for five winter seasons, on four domain sizes centred over the North American continent. Three variables are investigated: precipitation, specific humidity and zonal wind component. The results following the IBB protocol show that, when an RCM is driven by perfect LBC, its skill at reproducing the large scales decreases with increasing the domain of integration, but the errors remain small even for very large domains. On the other hand, when driven by LBC that contain errors, RCMs can bring some reduction of errors in large scales when very large domains are used. The improvement is found especially in the amplitude of patterns of both the stationary and the intra-seasonal transient components. When large errors are present in the LBC, however, these are only partly corrected by the RCM. Although results showed that an RCM can have some skill at improving imperfect large scales supplied as driving LBC, the main added value of an RCM is provided by its small scales and its skill to simulate extreme events, particularly for precipitation. Under the IBB protocol all RCM simulations were fairly skilful at reproducing small scales statistics, although the skill decreased with increasing LBC errors. Coarse-resolution model simulations have difficulties in simulating heavy precipitation events, and as a result their precipitation distributions are systematically shifted toward smaller intensity. Under the IBB protocol, all RCM simulations have distributions very similar to the reference field, being little affected by LBC errors, and no significant differences were found between the small scales statistics and the precipitation distributions obtained over different RCM domains.  相似文献   

16.
西北太平洋纬向扰动海温经验正交函数(EOF)分解第一和第三模态、第二和第四模态分别代表同期黑潮延伸体和亲潮强弱的配置关系,将两者的典型位相合成,可以分别得到延伸体收缩和扩张状态时的典型模态海温,本文以此及气候态海温作为初始海温强迫场,利用CESM1.2.0模式,讨论了延伸体的系统变异对北太平洋风暴轴的影响及其在不同能量转换过程的主要影响机制,结果表明,延伸体收缩状态下,北太平洋风暴轴强度整体加强,而扩张模态下强度减弱。空间分布上,收缩模态下,风暴轴主要体现为经向方向的变化,中心及其以北强度加强,中心以南减弱;扩张状态下,则主要表现为纬向方向的差异,中心及以西强度减弱明显,中心以东有所增强。对能量转换的诊断分析表明,正压能量转换过程对涡动动能的变化贡献很小,且在风暴轴中心附近,其作用主要为消耗涡动动能,延伸体收缩状态下其消耗作用增强,而扩张状态下消耗作用减弱,这一差异主要是由于不同海温异常强迫下瞬变涡旋的形变不同造成;斜压有效位能释放比正压能量转换大一个量级以上,该过程几乎全部通过基流的经向温度梯度和经向涡动热量输送的相互作用完成,在这一过程中大气斜压性(经向温度梯度)起了关键性作用,大气斜压性异常、基流经向温度梯度异常、斜压有效位能释放异常与风暴轴异常的空间分布均具有较好的对应关系,该过程可能也是延伸体海温异常影响北太平洋风暴轴的主要物理过程;涡动有效位能需要进一步转换为涡动动能才能产生瞬变涡旋运动,涡动有效位能释放的量级与斜压有效位能的释放相当,但数值要小,这一过程通过冷暖空气的上升下沉运动完成,延伸体异常模态下,扰动垂直速度和扰动温度的负相关性的变化与涡动有效位能向涡动动能转换的变化也有较好的对应关系。  相似文献   

17.
The impact of internal atmospheric variability on North Pacific sea surface temperature (SST) variability is examined based on three coupled general circulation model simulations. The three simulations differ only in the level of atmospheric noise occuring over the ocean at the air-sea interface. The amplitude of atmospheric noise is controlled by use of the interactive ensemble technique. This technique simultaneously couples multiple realizations of a single atmospheric model to a single realization of an ocean model. The atmospheric component models all experience the same SST, but the ocean component is forced by the ensemble averaged fluxes thereby reducing the impact of internal atmospheric dynamics at the air-sea interface. The ensemble averaging is only applied at the air-sea interface so that the internal atmospheric dynamics (i.e., transients) of each atmospheric ensemble member is unaffected. This interactive ensemble technique significantly reduces the SST variance throughout the North Pacific. The reduction in SST variance is proportional to the number of ensemble members indicating that most of the variability can simply be explained as the response to atmospheric stochastic forcing. In addition, the impact of the internal atmospheric dynamics at the air-sea interface masks out much of the tropical-midlatitude SST teleconnections on interannual time scales. Once this interference is reduced (i.e., applying the interactive ensemble technique), tropical-midlatitude SST teleconnections are easily detected.  相似文献   

18.
The feedback of an arctic polynya, which is a large ice-free zone within the sea ice, on the hemispheric climate is studied with the ECMWF T21 GCM. For this purpose a control and an anomaly integration, in which a polynya was introduced in the Kara Sea, are compared. As the GCM, like the real atmosphere, shows a high level of low frequency variability, the mean response to the changed boundary conditions is obscured by internal noise. The necessary significance analyses are thus performed to enhance the signal-tonoise ratio within the framework of an a priori chosen guess pattern and a multivariate test statistic. The sensible and latent heat fluxes increased above the polynya, which resulted in a warming of the lower troposphere above and near the polynya. No statistically significant local or global sea-level pressure changes are associated with this heating. However we find a significant change of hemispheric extent of the geopotential fields at 300 hPa, if we use as guess patterns the eigenmodes of the barotropic vorticity equation. The different mean flow field is accompanied by significant changes of the synoptic transient eddy field. We find a significant variation in the barotropic and baroclinic forcing of the mean flow by the eddies, a change in the location and intensity of the storm tracks and in the conversion between eddy available and eddy kinetic energy. The additional heat flux from the polynya results in a reduction of the meridional heat flux by the synoptic eddies on the western Atlantic.  相似文献   

19.
利用大气能量循环框图,对比分析中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(LASG/IAP)全球海-陆-气耦合系统模式(GOALS)两个版本(GOALS-2和GOALS-4),以及观测的全球平均大气能量循环的主要特征,并从能量循环贮蓄和转换项的纬向平均贡献去解释全球积分值改善和转坏的原因,以及诊断分析参数化方案变化后产生的影响.结果表明:模式的两个版本基本上能正确地模拟出全球能量循环的主要特征.旧版本GOALS-2能较好模拟全球积分值,常常是不同符号局地误差的相互抵消结果.新版本GOALS-4中某种局地过程的改善在一些情况下导致了全球积分值的转坏.引入辐射日变化参数化方案可能对能量循环各参数的局地贡献有着明显的影响.如纬向平均有效位能向瞬变涡动有效位能的斜压转换率、瞬变涡动有效位能向瞬变涡动动能的斜压转换率以及定常涡动动能的局地贡献有明显改善.南极地区不合实际的上升运动,是模拟的纬向平均有效位能与纬向平均动能之间的转换项全球积分值为负数的主要原因.  相似文献   

20.
Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin.The strength of deep convection in this region is related to the local atmospheric and ocean characteristics,which favor processes of deep convection preconditioning and intense air-sea exchange during the winter season.In this study,we explored the effect of eddy-induced flux transport on the stratification of the Labrador Sea and the properties of deep convection.Simulations from an eddy-resolving ocean model are presented for the Labrador Sea.The general circulation was well simulated by the model,including the seasonal cycle of the deep Labrador Current.The simulated distribution of the surface eddy kinetic energy was also close to that derived from Topex-Poseidon satellite altimeter data,but with smaller magnitude.The energy transfer diagnostics indicated that Irminger rings are generated by both baroclinic and barotropic processes; however,when they propagate into the interior basin,the barotropic process also disperses them by converting the eddy energy to the mean flow.In contrast to eddy-permitting simulations,deep convection in the Labrador Sea was better represented in the eddyresolving model regarding their lateral position.Further analysis indicated that the improvement might be due to the lateral eddy flux associated with the resolved Irminger rings in the eddy-resolving model,which contributes to a realistic position of the isopycnal dome in the Labrador Sea and correspondingly a realistic site of deep convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号