首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon markets and climate finance payments are being used to incentivize the mitigation of CO2 arising from anthropogenic land-use change in forests, marine ecosystems, and lowland grasslands. However, no such consideration has been given to how these ‘carbon finance incentives’ might be applied to mountain grasslands and shrublands, ecosystems that contain a substantial amount of carbon. These incentives amount to more than US$350 billion per annum and could potentially support underfunded natural resource management (NRM) activities, which are urgently needed to address numerous stressors impacting these important ecosystems. In the mountain context, NRM activities could include adaptive grazing management, sustainable cropping, ecosystem preservation, ecosystem restoration, and engineered soil conservation measures. This article investigates the stressors, challenges, and priorities related to the NRM of carbon stocks in mountain grasslands and shrublands; why carbon markets and climate finance have not yet been utilized in this context; and, what is required to position mountain-based NRM activities as eligible for carbon finance incentives. Using surveys and interviews triangulated with a systematic literature review, the study found that carbon finance incentives are not well understood, both amongst mountain-focused experts and in the literature. The study also found the required technical methodologies, policy frameworks, and data to be largely undeveloped. This article proposes a top-down conceptual policy framework that can be used to develop key ‘enabling factors’ with the view of extending the eligibility of carbon markets and climate finance to NRM activities undertaken in mountain grasslands and shrublands in the same way that has been afforded to other ecosystems.

Policy relevance

This is the first study to explicitly highlight the important role that the mountain grasslands and shrublands might play in international climate policy, and how carbon finance mechanisms might support better NRM in these areas. It is also the first to investigate why these incentives have not been adopted thus far. The article concludes by proposing a novel top-down ‘carbon incentive enabling’ framework that could be driven by governments and mountain development focused organizations so as to capture some of the opportunities offered by carbon-based incentives, and help meet international climate policy objectives.  相似文献   


2.
Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects for the case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.  相似文献   

3.
Human activities have notably affected the Earth’s climate through greenhouse gases(GHG), aerosol, and land use/land cover change(LULCC). To investigate the impact of forest changes on regional climate under different shared socioeconomic pathways(SSPs), changes in surface air temperature and precipitation over China under low and medium/high radiative forcing scenarios from 2021 to 2099 are analyzed using multimodel climate simulations from the Coupled Model Intercomparison Project Phase 6(CMIP...  相似文献   

4.
《Climate Policy》2013,13(2):216-231
Reducing emissions from deforestation and forest degradation (REDD) in developing countries has been at the centre of negotiations on a renewed international climate regime. Developing countries have made it clear that their ability to engage in REDD activities would depend on obtaining sufficient and stable funding. Two alternative REDD financing options are examined to find possible ways forward: financing through a future compliance market and financing through a non-offset fund. First, global demand for hypothetical REDD credits is estimated. The demand for REDD credits would be highest with a base year of 1990, using gross—net accounting. The key factors determining demand in this scenario are the emission reduction targets and the allowable cap. A proportion of emission reduction targets available for offsets lower than 15% would fail to generate a sufficient demand for REDD. Also examined is the option of financing REDD through a fund. Indirectly linking the replenishment of a REDD fund to the market is a promising mechanism, but its feasibility depends on political will. The example of overseas development assistance for global health indicates the conditions for possible REDD financing. The best financial approach for REDD would be a flexible REDD mechanism with two tracks: a market track serving as a mitigation option for developed countries, and a fund track serving as a mitigation option for developing countries.  相似文献   

5.
6.
With market-mechanisms likely to achieve emission reductions at lower cost than alternative approaches, there is a presumption that they will be embraced by those who are serious about achieving ambitious reductions. Two broad messages exist; there is already considerable activity and some ambition in many parts of the world – a fragmented but embryonic ‘global’ trading landscape is emerging – and there are efforts at UN level to provide a unifying framework for these bottom-up developments. The topography of interest and response varies considerably across groups of countries, and there have been delays in making progress on a unifying framework. This article analyses the current carbon market landscape in terms of market dynamics and market-mechanism developments whilst undertaking an examination of how climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC) is shaping the future carbon market landscape. This work shows that the combination of existing, emerging, and potential carbon market-mechanisms can be regarded as an emerging pre-2020 fragmented ‘global’ carbon market landscape based on differing bottom-up market based approaches. One outcome of a 2015 Climate Agreement could be a post-2020 global carbon market which would include new domestic and international market initiatives such as the Framework for Various Approaches and New Market Mechanism, together with reformed Kyoto mechanisms.

Policy relevance

With the 2015 Agreement under the United Nations Framework Convention on Climate Change (UNFCCC) expected to see Parties commit to ambitious mitigation commitments, post-2020 could see significant Party (& industry) investment in market-mechanisms and associated emissions units in an effort to achieve some of the abatement cost minimization offered by market approaches. This article is written for those who have an interest in understanding what is happening – and what is not happening – as regards the emergence of market-related approaches to GHG mitigation globally in the run up to the 21st Conference of the Parties (COP) of the UNFCCC which meets in Paris in December 2015, and what could be the shape of things to come post-2020.  相似文献   

7.
Studies show that the ‘well below 2°C’ target from the Paris Agreement will be hard to meet without large negative emissions from mid-century onwards, which means removing CO2 from the atmosphere and storing the carbon dioxide in biomass, soil, suitable geological formations, deep ocean sediments, or chemically bound to certain minerals. Biomass energy combined with Carbon Capture and Storage (BECCS) is the negative emission technology (NET) given most attention in a number of integrated assessment model studies and in the latest IPCC reports. However, less attention has been given to governance aspects of NETs. This study aims to identify pragmatic ways forward for BECCS, through synthesizing the literature relevant to accounting and rewarding BECCS, and its relation to the Paris Agreement. BECCS is divided into its two elements: biomass and CCS. Calculating net negative emissions requires accounting for sustainability and resource use related to biomass energy production, processing and use, and interactions with the global carbon cycle. Accounting for the CCS element of BECCS foremost relates to the carbon dioxide capture rate and safe underground storage. Rewarding BECCS as a NET depends on the efficiency of biomass production, transport and processing for energy use, global carbon cycle feedbacks, and safe storage of carbon dioxide, which together determine net carbon dioxide removal from the atmosphere. Sustainable biomass production is essential, especially with regard to trade-offs with competing land use. Negative emissions have an added value compared to avoided emissions, which should be reflected in the price of negative emission ‘credits’, but must be discounted due to global carbon cycle feedbacks. BECCS development will depend on linkages to carbon trading mechanisms and biomass trading.

Key policy insights

  • A standardized framework for sustainable biomass should be adopted.

  • Countries should agree on a standardized framework for accounting and rewarding BECCS and other negative emission technologies.

  • Early government support is indispensable to enable BECCS development, scale-up and business engagement.

  • BECCS projects should be designed to maximize learning across various applications and across other NETs.

  • BECCS development should be aligned with modalities of the Paris Agreement and market mechanisms.

  相似文献   

8.
Mobilizing climate finance for climate change mitigation is a crucial part of meeting the ‘well-below’ 2°C goal of the Paris Agreement. Climate finance refers to investments specifically in climate change mitigation and adaptation activities, which involve public finance and the leveraging of private finance. A large proportion of climate finance is Official Development Assistance (ODA) from OECD countries to ODA-eligible countries. The evidence shows that the largest proportion of climate finance for climate change mitigation has been channelled to the development of renewable energy, with a much smaller proportion flowing to other crucial forms of clean energy-related measures, such as demand-side management (DSM) (particularly sustainable cooling) and carbon capture, usage and storage (CCUS). This forms the rationale and aim of this synthesis paper: to review the role of climate finance to develop clean energy beyond renewables. In doing so, the paper draws on practical policy and programme experiences of some donor countries, such as the UK, and Development Finance Institutions (DFIs). This paper argues that a greater amount of climate finance from OECD countries to ODA-eligible fossil fuel-intensive emerging economies and developing countries is required for sustainable cooling and CCUS, particularly in the form of technical assistance and clean energy innovation.

Key policy insights

  • Demand-side management (DSM) and carbon capture, usage and storage (CCUS) are underfunded in climate finance compared with the promotion of renewables.

  • Climate finance for sustainable cooling, in particular, represents just 0.04% of total ODA, despite cooling projected to represent 13% of global emissions by 2030.

  • Public investment in CCUS is limited at US $28 billion since 2007, despite the costs of meeting the Paris Agreement estimated to be 40-128% more expensive without CCUS.

  • Additional climate finance for these sectors should not come at the expense of funding for renewables but should be complementary to it.

  相似文献   

9.
Introducing a carbon tax is difficult, partly because it suggests that current generations have to make sacrifices for the benefit of future generations. However, the climate change externality could be corrected without such a sacrifice. It is possible to set a carbon value, and use it to create ‘carbon certificates’ that can be accepted as part of commercial banks’ legal reserves. These certificates can be distributed to low-carbon projects, and be exchanged by investors against concessional loans, reducing capital costs for low-carbon projects. As the issuance of carbon certificates would increase the quantity of money, it will either lead to accelerated inflation or induce the Central Bank to raise interest rates. Low-carbon projects will thus have access to cheaper loans at the expense of either ‘regular’ investors (in case of higher interest rates) or of lenders and depositors (in case of accelerated inflation). Within this scheme, mitigation expenditures are compensated by a reduction in regular investments, so that immediate consumption is maintained. It uses future generation wealth to pay for a hedge against climate change. This framework is not as efficient as a carbon tax but is politically easier to implement and represents an interesting step in the trajectory towards a low-carbon economy.  相似文献   

10.
If carbon sequestration is to be a cost-effective substitute for reducing emissions then it must occur under a framework that ensures that the sequestration is additional to what would otherwise have occurred, the carbon is stored permanently, and any leakage is properly accounted for. We discuss significant challenges in meeting these requirements, including some not previously recognized. Although we focus on sequestration in soil, many of the issues covered are applicable to all types of sequestration. The common-practice method for determining additionality achieves its intention of reducing transaction costs in the short term but not in the medium to long term. Its design results in the least costly, additional abatement-measures being excluded from policy support and fails to address how, in the case of sequestration, revisions to the additionality of sequestering practices should apply not just to the future, but in theory, also retrospectively. Permanence is sometimes approximated as 100 years of sequestration. Re-release of sequestered carbon after this will not only reverse the sequestration, but may raise atmospheric carbon to higher levels than they would have been if the sequestration had never occurred. Leakage associated with sequestration practices can accumulate over time to exceed the total level of sequestration; nonetheless, adoption of such practices can be attractive to landholders, even when they are required to pay for this leakage at contemporary prices.

Policy relevance

Globally, much has been written and claimed about the ability to offset emissions with sequestration. The Australian Government plans to use sequestration to source much of the abatement required to reach its emissions targets. Designing effective policy for sequestration will be challenging politically, and will involve substantial transaction costs. Compromises in policy design intended to make sequestration attractive and reduce transaction costs can render it highly inefficient as a policy.  相似文献   


11.
土地利用和土地覆盖变化对气候系统影响的研究进展   总被引:4,自引:4,他引:4  
土地利用和土地覆盖变化(LUCC或LULCC)不仅对人类赖以生存的地球环境有重要影响,同时与人类福祉密切联系。人类活动对气候的强迫不仅包括温室气体排放导致的气候变暖,还通过直接改变地表物理性状以及间接改变其他生物地球物理过程和生物地球化学过程等对气候系统产生深刻影响。作者在此认识的基础上回顾了LUCC对气候系统影响的研究历史,结合新近的研究结果归纳了诸如森林砍伐、城市化、修坝等LUCC活动在区域和全球尺度的气候效应。LUCC具有高度的空间异质性,因此气候系统对它的反馈也具有明显的空间差异。由于全球平均后变化幅度相对区域上的小,LUCC对区域气候影响显著,而对全球气候影响不明显。它对区域气候的影响取决于反照率、蒸散发效率和地表粗糙率等变化的综合效应:在热带地区LUCC主要引起温度升高,在高纬度地区使温度下降。在全球尺度上LUCC导致气候的变暖主要通过减少蒸散发和潜热通量引起陆表水循环的改变,其次通过改变地表反照率导致辐射强迫改变。最后指出目前LUCC在气候变化学科中的研究所存在的问题。在此基础上提出了未来的研究首先需要评估的3个气候指标,并提倡多学科间的相互合作。  相似文献   

12.
情景是气候变化研究的重要工具。为了科学支撑气候变化科学评估和研究,2010年政府间气候变化专门委员会(IPCC)提出了共享社会经济路径(Shared Socioeconomic Pathways, SSPs)。作为从社会经济变化视角构建的气候情景,SSPs促进了气候变化科学基础、影响、脆弱性、风险、适应和减缓等学科的综合研究。本文介绍了SSPs情景研发与应用过程;阐述了全球和中国的人口经济、土地利用、能源和碳排放的模拟和预估主要成果;探讨了全球和中国碳排放路径及其与“双碳”目标的关系;并展望了SSPs应用前景。  相似文献   

13.
利用NCAR大气环流模式CAM4.0,针对潜在植被和当代植被的分布情形进行了两组25 a的积分试验,探讨了土地利用变化对东亚地区地表能量平衡、水分循环和气候的可能影响.结果表明:以森林退化、农田迅速增加为主的当代土地利用变化,显著改变地表属性,使得东亚地区不同季节的地表反照率均明显增加,并显著改变东亚地区的冬、春季节的地表能量和水分循环.此外,当代大尺度土地利用变化对东亚地区大气环流也有一定影响,可引起东亚冬季风环流显著加强和东亚夏季较弱的偏南风异常.当代土地利用变化未能引起东亚地区近地面气温的显著变化,但可引起东亚北(南)部地区春季降水的显著增加(减小).  相似文献   

14.
All sectors face decarbonization for a 2 °C temperature increase to be avoided. Nevertheless, meaningful policy measures that address rising CO2 from international aviation and shipping remain woefully inadequate. Treated with a similar approach within the United Nations Framework Convention on Climate Change (UNFCCC), they are often debated as if facing comparable challenges, and even influence each others’ mitigation policies. Yet their strengths and weaknesses have important distinctions. This article sheds light on these differences so that they can be built upon to improve the quality of debate and ensuing policy development. The article quantifies ‘2 °C’ pathways for these sectors, highlighting the need for mitigation measures to be urgently accelerated. It reviews recent developments, drawing attention to one example where a change in aviation mitigation policy had a direct impact on measures to cut CO2 from shipping. Finally, the article contrasts opportunities and barriers towards mitigation. The article concludes that there is a portfolio of opportunities for short- to medium-term decarbonization for shipping, but its complexity is its greatest barrier to change. In contrast, the more simply structured aviation sector is pinning too much hope on emissions trading to deliver CO2 cuts in line with 2 °C. Instead, the solution remains controversial and unpopular – avoiding 2 °C requires demand management.

Policy relevance

The governance arrangements around the CO2 produced by international aviation and shipping are different from other sectors because their emissions are released in international airspace and waters. Instead, through the Kyoto Protocol, the International Civil Aviation Authority (ICAO) and the International Maritime Organization (IMO) were charged with developing policies towards mitigating their emissions. Slow progress to date, coupled with strong connections with rapidly growing economies, has led to the CO2 from international transport growing at a higher rate than the average rate from all other sectors. This article considers this rapid growth, and the potential for future CO2 growth in the context of avoiding a 2 °C temperature rise above pre-industrial levels. It explores similarities and differences between these two sectors, highlighting that a reliance on global market-based measures to deliver required CO2 cuts will likely leave both at odds with the overarching climate goal.  相似文献   

15.
Carbon leakage is central to the discussion on how to mitigate climate change. The current carbon leakage literature focuses largely on industrial production, and less attention has been given to carbon leakage from the electricity sector (the largest source of carbon emissions in China). Moreover, very few studies have examined in detail electricity regulation in the Chinese national emissions trading system (which leads, for example, to double counting) or addressed its implications for potential linkage between the EU and Chinese emissions trading systems (ETSs). This article seeks to fill this gap by analysing the problem of ‘carbon leakage’ from the electricity sector under the China ETS. Specifically, a Law & Economics approach is applied to scrutinize legal documents on electricity/carbon regulation and examine the economic incentive structures of stakeholders in the inter-/intra-regional electricity markets. Two forms of ‘electricity carbon leakage’ are identified and further supported by legal evidence and practical cases. Moreover, the article assesses the environmental and economic implications for the EU of potential linkage between the world’s two largest ETSs. In response, policy suggestions are proposed to address electricity carbon leakage, differentiating leakage according to its sources.

Key policy insights

  • Electricity carbon leakage in China remains a serious issue that has yet to receive sufficient attention.

  • Such leakage arises from the current electricity/carbon regulatory framework in China and jeopardizes mitigation efforts.

  • With the US retreat on climate efforts, evidence suggests that EU officials are looking to China and expect an expanded carbon market to reinforce EU global climate leadership.

  • Given that the Chinese ETS will be twice the size of the EU ETS, a small amount of carbon leakage in China could have significant repercussions. Electricity carbon leakage should thus be considered in any future EU–China linking negotiations.

  相似文献   

16.
胡祖恒  徐忠峰  马柱国 《气象》2017,43(12):1453-1460
为了探究温室气体(greenhouse gas,GHG)和土地利用/覆盖变化(land use and land cover change,LULCC)对于地面气温日较差(diurnal temperature range,DTR)的影响及相对贡献作用,本文采用耦合地球系统模式(Community Earth System Model)进行了模拟研究。模拟结果表明:GHG浓度的增加导致北半球中高纬度地区年平均DTR显著降低,但GHG引起DTR变化存在显著的季节差异,在暖季和冷季,北美地区和西伯利亚地区呈现出相反的变化特征,GHG增加对于中高纬度地区年平均DTR的降低作用主要是由冷季贡献的。LULCC通过影响叶面积指数和地面反照率显著降低东亚、南亚、欧洲和北美东部地区的DTR。通过创建一种新的分析方式,本文研究了GHG和LULCC对DTR的相对贡献作用,在北半球高纬度地区,GHG在DTR的变化中扮演着主导作用,但在中纬度地区和南亚地区,无论是DTR变化数值的正负符号还是大小,LULCC都起着显著的影响作用。  相似文献   

17.
The traditional resource use structure in Himalaya has transformed considerably during the recent past, mainly owing to the growth of population and the resultant increased demand of natural resources in the region. This transformation in resource use practices is particularly significant in the densely populated tracts of Himalaya. As a result, cultivated land, forests, pastures and rangelands have been deteriorated and depleted steadily and significantly leading to their conversion into degraded and non-productive lands. These rapid land use changes have not only disrupted the fragile ecological equilibrium in the mountains through indiscriminate deforestation, degradation of land resources and disruption of the hydrological cycle, but also have significant and irreversible adverse impacts on the rural economy, society, livelihood and life quality of mountain communities. It has been observed that the agricultural production has declined, water sources are drying up fast due to decreased ground water recharge and a large number of villages are facing enormous deficit of critical resources, such as food, fodder, firewood and water, mainly due to unabated deforestation. As a result, the rural people, particularly the women, have to travel considerably long distances to collect fodder and firewood and to fetching water. It is therefore highly imperative to evolve a comprehensive and integrated land use framework for the conservation of the biophysical environment and sustainable development of natural resources in Himalaya. The land use policy would help local communities in making use of their natural resources scientifically and judiciously, and thus help in the conservation of the biophysical environment and in the increasing of the productivity of natural resources. The study indicates that conservation of forests and other critical natural resources through community participation, generation of alternative means of livelihood, and employment in rural areas can help increase rural income as well as restore ec  相似文献   

18.
受气候增暖和人类活动的双重影响,黄河流域的水循环正在发生显著变化,水资源供需矛盾突出。陆地水循环是一个复杂的非线性系统,为清晰认识水循环变化的全貌,并合理高效利用有限的水资源量,需要综合考虑水循环各个要素之间的协同变化机制。同时,在“人类世”背景下,黄河流域水循环研究必须考虑人类活动的影响,主要包括植被变化和人类用水,其中人类用水主体为农业灌溉。自从实施生态恢复工程以来,黄土高原植被覆盖明显改善的同时也引发了对径流、蒸散发、降水、土壤湿度以及地下水的一系列影响,且研究结论还存在一些争议,但黄土高原植被覆盖改善使得该地区蒸散发量增加基本达成共识,大多数研究支持植被改善减少径流的结论。黄河流域的农业灌溉方式主要为大水漫灌,其对地表蒸散发、地表水及地下水多个过程具有重要影响。本文主要针对黄河流域的水循环研究,讨论相关研究进展以及发展方向。  相似文献   

19.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

20.
To begin exploring the underlying mechanisms that couple vegetation to cloud formation processes, we derive the lifting condensation level (LCL) to estimate cumulus cloud base height. Using a fully coupled land–ocean–atmosphere general circulation model (HadCM3LC), we investigate Amazonian forest feedbacks on cloud formation over three geological periods; modern-day (a.d. 1970–1990), the last glacial maximum (LGM; 21 kya), and under a future climate scenario (IS92a; a.d. 2070–2090). Results indicate that for both past and future climate scenarios, LCL is higher relative to modern-day. Statistical analyses indicate that the 800 m increase in LCL during the LGM is related primarily to the drier atmosphere promoted by lower tropical sea surface temperatures. In contrast, the predicted 1,000 m increase in LCL in the future scenario is the result of a large increase in surface temperature and reduced vegetation cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号