首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》2013,26(3-4):167-208
The Denizli graben-horst system (DGHS) is located at the eastern-southeastern converging tips of three well-identified major grabens, the Gediz, the Küçük Menderes and the Büyük Menderes grabens, in the west Anatolian extensional province. It forms a structural link between these grabens and the other three NE-NW-trending grabens—the Çivril, the Ac?göl and the Burdur grabens—comprising the western limb of the Isparta Angle. Therefore, the DGHS has a critical role in the evolutionary history of continental extension and its eastward continuation in southwestern Turkey, including western Anatolia, west-central Anatolia, and the Isparta Angle. The DGHS is a 7-28-km wide, 62-km long, actively growing and very young rift developed upon metamorphic rocks of both the Menderes Massif and the Lycian nappes, and their Oligocene-Lower Miocene cover sequence. It consists of one incipient major graben, one modern major graben, two sub-grabens and two intervening sub-horsts evolved on the four palaeotectonic blocks. Therefore, the DGHS displays different trends along its length, namely, NW, E-W, NE and again E-W.

The DGHS has evolved episodically rather than continuously. This is indicated by a series of evidence: (1) it contains two graben infills, the ancient graben infill and the modern graben infill, separated by an intervening angular unconformity; (2) the ancient graben infill consists of two Middle Miocene-Middle Pliocene sequences of 660 m thickness accumulated in a fluvio-lacustrine depositional setting under the control of first NNW-SSE- and later NNE-SSW-directed extension (first-stage extension), and deformed (folded and strike-slip faulted) by a NNE-SSW- to ENE-WSW-directed phase of compression in the latest Middle Pliocene, whereas the modern graben infill consists of 350-m thick, undeformed (except for local areas against the margin-bounding active faults), nearly flat-lying fanapron deposits and travertines of Plio-Quaternary age; (3) the ancient graben infill is confined not only to the interior of the graben but is also exposed well outside and farther away from the graben, whereas the modern graben infill is restricted to only the interior of the graben. These lines of evidence imply an episodic, two-stage extensional evolutionary history interrupted by an intervening compressional episode for the DGHS.

Both the southern and northern margin-bounding faults of the DGHS are oblique-slip normal faults with minor right- and/or left-lateral strike-slip components. They are mapped and classified into six categories, and named the Babada?, Honaz, A?a??da?dere, Küçükmal?da?, Pamukkale and Kaleköy fault zones, and composed of 0.5-36-km long fault segments linked by a number of relay ramps. Total throw amounts accumulated on both the northern and southern margin-bounding faults are 1,050 m and 2,080 m, respectively. In addition, the maximum width of the DGHS and the thickness of the crust beneath it are more or less same (~ 28 km). The total of these values indicate a vertical slip rate of 0.15-0.14 mm/year and averaging 7% extension for the asymmetrical DGHS.

The master faults of the Babada?, Honaz, Küçükmal?da?, Pamukkale and Kaleköy fault zones are still active and have a potential seismicity with magnitudes 6 or higher. This is indicated by both the historical (1703 and 1717 seismic events) to recent (1965, 1976, 2000 seismic events) earthquakes sourced from margin-bounding faults and some diagnostic morphotectonic features, such as deflected drainage system, degraded alluvial fans with apices adjacent to fault traces, back-tilting of fault-bounded blocks, and actively growing travertine occurrences. The kinematic analyses of main fault-slip-plane data, Upper Quaternary fissure ridges and focal-mechanism solutions of some destructive earthquakes clearly indicate that the current continental extension (second-stage extension) by normal faulting in the DGHS continues in a (mean) 026° to 034° (NNE-SSW) direction.

Detailed and recent field geological mapping, stratigraphy of the Miocene-Quaternary basins, palaeostress analysis of fault populations and main margin-bounding faults of these basins, extensional gashes to fissures, and focal-mechanism solutions of destructive earth-quakes that have occurred in last century strongly indicate that extension is not unidirectional and confined only to western Anatolia, but also continues farther east across the Isparta Angle and west-central Anatolia, up to the Salt Lake fault zone in the east and the inönü-Eski?ehir fault zone in the north-northeast. Therefore, the term “southwest Turkey extensional province” is proposed in lieu of the term “west Anatolian extensional province”.  相似文献   

2.
This study aims to carry out a seismic risk assessment for a typical mid-size city based on building inventory from a field study. Contributions were made to existing loss estimation methods for buildings. In particular, a procedure was introduced to estimate the seismic quality of buildings using a scoring scheme for the effective parameters in seismic behavior. Denizli, a typical mid-size city in Turkey, was used as a case study. The building inventory was conducted by trained observers in a selected region of Denizli that had the potential to be damaged from expected future earthquakes according to geological and geotechnical studies. Parameters that are known to have some effect on the seismic performance of the buildings during past earthquakes were collected during the inventory studies. The inventory includes data of about 3,466 buildings on 4,226 parcels. The evaluation of inventory data provided information about the distribution of building stock according to structural system, construction year, and vertical and plan irregularities. The inventory data and the proposed procedure were used to assess the building damage, and to determine casualty and shelter needs during the M6.3 and 7.0 scenario earthquakes, representing the most probable and maximum earthquakes in Denizli, respectively. The damage assessment and loss studies showed that significant casualties and economic losses can be expected in future earthquakes. Seismic risk assessment of reinforced concrete buildings also revealed the priorities among building groups. The vulnerability in decreasing order is: (1) buildings with 6 or more stories, (2) pre-1975 constructed buildings, and (3) buildings with 3–5 stories. The future studies for evaluating and reducing seismic risk for buildings should follow this priority order. All data of inventory, damage, and loss estimates were assembled in a Geographical Information System (GIS) database.  相似文献   

3.
In this paper we describe an example of travertine fissure-ridge development along the trace of a normal fault with metre displacement, located in the eastern margin of the Neogene–Quaternary Siena Basin, in the Terme S. Giovanni area (Rapolano Terme, Italy). This morphotectonic feature, 250 m long, 30 m wide and 10 m high, formed from supersaturated hot waters (39.9°C) flowing from thermal springs aligned along the trace of the normal fault dissecting travertines not older than Late Pleistocene (24 ± 3 ka). A straight, continuous fissure with a maximum width of 20 cm occurs at the top of the ridge, along its crest. Hot fluids flow from cones mainly located at the extremities of the ridge, where travertine is depositing. The travertine fissure-ridge shows an asymmetrical profile since it buries the fault scarp. The difference in height of slopes corresponds to the vertical displacement of the normal fault. Fissuring of the recent travertine deposits along the strike of the crestal fissure, as well as recent hydrothermal circulation, lead us to believe that the Terme S. Giovanni normal fault may be currently active. On the whole, the Terme S. Giovanni fissure ridge can be defined as a travertine fault trace fissure-ridge, adding a helpful example for studying the relationship between faulting and travertine deposition.  相似文献   

4.
《Geodinamica Acta》2013,26(3-4):209-238
The chronology of extension of the continental crust in western Turkey has been the subject of major controversies. We suggest that these difficulties have arisen in part because of past misuse of dating evidence; and in part because the assumption often made, that deposition of major terrestrial sedimentary sequences implies crustal extension to create the necessary accommodation space, is incorrect. We report evidence that the present phase of extension began in the Denizli region at ~ 7 Ma, around the start of the Messinian stage of the Late Miocene. This timing matches the estimated start of right-lateral slip on the North Anatolian Fault Zone, and corresponds to a substantial increase in the dimensions of the Aegean extensional province to roughly its present size: beforehand, between ~ 12 Ma and ~ 7 Ma, extension seems to have only occurred in the central part of this modern province. In some localities, terrestrial sedimentation that began before this start of extension continued into this extensional phase, both within and outside normal fault zones. However, in other localities within the hanging-walls of normal faults, the start of extension marked the end of sedimentation. Relationships between sedimentation and crustal extension in this region are thus not straightforward, and a simple correlation should therefore not be assumed in structural interpretations. During the time-scale of this phase of extension, the Denizli region has also experienced major vertical crustal motions that are unrelated to this extension. The northern part of this region, in the relatively arid interior of western Turkey, has uplifted by ~ 400 m since the Middle Pliocene, whereas its southern part, closer to the Mediterranean Sea and with a much wetter climate, has uplifted by ~ 1,200 m since the Early Miocene, by up to ~ 900 m since the Middle Pliocene, and by an estimated ~ 300 m since the Early Pleistocene. This regional uplift, superimposed on the local effects of active normal faulting, is interpreted as a consequence of lateral variations in rates of erosion. A reliable chronology for this phase of extension in western Turkey, in relation to changes in the geometry of motions of adjoining plates and Late Cenozoic environmental change, is now in place.  相似文献   

5.
The recent discoveries of deeply buried Cretaceous reservoir bodies in the Atlantic Ocean revealed that relationships between the distribution of spring carbonate deposits and faults are poorly understood. The well‐exposed Quaternary deposits at Obruktepe (Denizli Basin, Turkey) provide an opportunity to reconstruct the three‐dimensional sedimentary architecture of such a system. Integration of sedimentological, lithofacies and geochemical analyses reveals complexity in the lateral relationships between sedimentary environments, faults and geothermal spring carbonates. Five environmental systems are distinguished based on the lithofacies analysis: (i) vent; (ii) smooth slope; (iii) travertine‐terrace; (iv) tufa‐barrage; and (v) flood systems. Encrusting, baffling and settling sedimentary processes are reflected in data acquired at several scales, from lithofacies observations to the morphology and arrangement of geobodies, together with microfabrics and stable carbon and oxygen isotope data. Mean values of +4·9‰ δ13C and −8·74‰ δ18O Vienna PeeDee Belemnite reflect geothermal circulation of springwaters. The environmental distribution and lithofacies indicate a lateral continuum between travertine and tufa deposits within this hot spring system. This finding supports two depositional models in which water flow variation is the main control on both CaCO3 precipitation and the resulting formation of travertine and tufa. The proposed models address the factors responsible for the development of these complex mound‐shaped carbonate spring deposits, and how they are related to fluid circulation at depth and in association with faults.  相似文献   

6.
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.  相似文献   

7.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   

8.
Hydrocarbon-bearing Thrace Basin occupies much of the European part of Turkey. The Middle Eocene to Oligocene sequence in the centre of the basin exceeds 9 km in thickness. Based on the stratigraphy, structure and the regional context of this basin, we propose that it developed as a fore-arc basin between the medial Eocene and the Oligocene, above the northward subducting Intra-Pontide Ocean. Its post-Miocene history has been dominated mainly by wrench tectonics resulting from the activity of the now-deactivated northwestern strand. of the present-day North Anatolian fault zone.  相似文献   

9.
Map patterns of normal fault linkages near Summer Lake, Oregon, show a systematic relationship between échelon step-sense, oblique-slip sense, and the position of linking faults. Where the step sense is the same as the sense of oblique slip (e.g. left step and left-oblique slip), the faults are linked in the lower part of their relay ramp. Where the step-sense and slip-sense are opposite (e.g. left-step and right-oblique slip), the faults are linked in the upper part of the ramp. A boundary-element code is used to calculate the stress field around échelon normal faults during oblique slip, and the model results reveal a relationship similar to the field observations. If step sense and oblique-slip sense are the same, there is a greater potential for deformation ahead of the tip of the front fault and in the lower part of the ramp. If step sense and oblique-slip sense are opposite, there is a greater potential for deformation ahead of the tip of the rear fault and in the upper part of the ramp. The field-model comparison confirms that oblique slip modifies the mechanical interaction among fault segments and thus influences fault growth and the geometry of fault linkage.  相似文献   

10.
We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128–308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw.Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault arrays to form two along-strike, NW-SE striking fault assemblages, and; [4] termination of fault growth in the latest Maastrichtian. We document high variability of throw along-strike and down-dip for both fault assemblages, thereby providing evidence for lateral and vertical segment linkage. Our results highlight the complexities involved in the growth of both gravity-driven normal fault arrays (such as those present in the Niger Delta and Gulf of Mexico) and basement-linked normal fault arrays (such as those present in the North Sea and Suez Rift) with the interaction of an underlying and reactivating basement framework. This study provides an excellent example of spatial variability in growth of two normal fault assemblages over relatively short spatial scales (∼2 km separation down-dip).  相似文献   

11.
《Geodinamica Acta》2013,26(6):427-453
This paper aims to illustrate and discuss mechanism(s) responsible for the growth and evolution of large-scale corrugated normal faults in southwest Turkey. We report spectacular exposures of normal fault surfaces as parts of the Manisa Fault - a ?50-km-long northeast-ward arched active fault that defines the northwestern edge of the Manisa graben, which is subsidiary to the Gediz Graben. The fault is a single through-going corrugated fault system with distinct along-strike bends. It follows NW direction for 15 km in the south, then bends into an approximately E-W direction in the northwest. The fault trace occurs at the base of topographic scarps and separates the Quaternary limestone scree and alluvium from the highly strained, massive bed-rock carbonates. The fault is exposed on continuous pristine slip surfaces, up to 60 m high. The observed surfaces are polished and ornamented by well-preserved various brittle structural features, such as slip-parallel striations, gutters and tool tracks, and numerous closely spaced extension fractures with straight or crescentic traces. The rocks both in the footwall and hanging-wall of the fault possess a well-developed fault rock stratigraphy made up, from structurally lowest to the top, of massive undeformed recrystallized limestone, a zone of cemented breccia sheets, corrugated polished slip planes, and first brecciated, then unbrecciated scree.

The observed slip surfaces of the Manisa Fault contain two sets of striations that suggest an early phase of sinistral strike-slip and a subsequent normal-slip movements. The first phase is attributed to: (i) approximately E-W-directed compression that commenced during either (?) Early-Middle Pliocene time or (ii) the current extensional tectonics and consequent modern graben formation in southwest Turkey that initiated during the Plio-Quaternary. During this period, the Manisa Fault was reactivated and it became a major segment. Stress inversion of fault slip data suggests that southwest Turkey has been experiencing multidirectional crustal extension, with components of approximately N-S, E-W, NE-SW and NW-SE extension. Following the reactivation, the inherited fault segments were connected to each other through interaction, linkage and amalgamation of previously discontinuous and overlapping smaller stepping adjacent faults. Linkage was via the formation of new connecting (breaching) fault(s) or by curved propagation of fault-tips. The result is a single through-going corrugated fault trace with distinct along-strike bends. The final geometry of the Manisa Fault is thus the combined result of reactivation and continuing interaction between previously discontinuous segmented fault traces.  相似文献   

12.
塔里木盆地西南坳陷发现晚新生代伸展构造   总被引:1,自引:0,他引:1       下载免费PDF全文
通过认真、系统的地震资料解释, 我们在塔里木盆地西南坳陷首次发现晚新生代正断层。 这些正断层发育于西南坳陷的东北部, 走向 NE-SW, 剖面上组合成堑垒构造, 个别剖面上显示负花状构造特征。 正断层主要发育于新生界, 向上断至的最高层位是第四系更新统下部。 倾向相反的正断层向下交汇后断距消失, 断层继续向下延伸的情况不清楚。 根据断距 变化和生长指数计算, 正断层形成于上新世晚期, 持续演化至更新世早期。 正断层的形成演化过程与以往在阿瓦提凹陷、巴楚隆起和塘沽孜巴斯坳陷发现的晚新生代正断层基本一致, 正断层活动时间为 ca. 3~2 Ma。 它们形成于一个区域性弱伸展构造应力场, 代表印度-亚洲碰撞远程效应下, 塔里木盆地脉式挤压冲断过程中的一个构造间歇期。  相似文献   

13.
The increase in the popularity of using environmental design criteria in town and country planning has brought about the need to fully identify the principles to determine the best location of hazardous wastes to be landfilled. This environmental management issue has received considerable attention because of its applications in urban and rural infrastructure planning, industrial development planning as well as health, housing, transportation and agricultural schemes. This paper explains a method to determine how to locate suitable sites for hazardous waste landfilling area by using the site screening study. It demonstrates how the criteria such as geology, topography, land use, climate, earthquake and other related factors can be introduced into the overlayer technique to determine the suitable site selection in a region. The research was undertaken in the Southeastern Anatolia Project (known as GAP in Turkey) region where identifying the land resources is crucial for agricultural and water management purposes. The paper also explains the validity of the method employed on the site selection process for hazardous wastes. The introduced method may enable more accurate design procedure for planning in environmental management in future.  相似文献   

14.
Inversion of the magnetotelluric data across the southwestern Taurides reveals two subzones of crust with varying thicknesses: conductive lower crust (<75 Ω m), overlain by resistive (>350 Ω m) upper crust, with four resistive cores (>2000 Ω m) separated by three relatively conductive vertical zones. The first and second vertical zones coincide with surface faults interpreted in Anatolia, such as Fethiye Burdur Fault Zone. The third one is the most conductive and lies in continuity with the Strabo Fault Zone in the Mediterranean Sea. A hypocentral cross section of earthquakes along the profile shows more dense seismic activity in the second resistive core where the conductive crust is not present beneath it. The depth of the crust/upper mantle boundary varies between 30 and 50 km and has an undulating character. The resistivity of the upper mantle reaches 500–1000 Ω m.  相似文献   

15.
This study was undertaken to determine the structural evolution of a normal fault array using detailed kinematic analysis of normal fault tip propagation and linkage, adding to the growing pool of research on normal fault growth. In addition, we aim to provide further insight into the evolution of the offshore Otway Basin, Australia. We use three-dimensional (3D) seismic reflection data to analyse the temporal and spatial evolution of a Late Cretaceous–Cenozoic age normal fault array located in the Gambier Embayment of the offshore Otway Basin, South Australia. The seismic reflection data cover a NW–SE-oriented normal fault array consisting of six faults, which have grown from the linkage of numerous, smaller segments. This fault array overlies and has partial dip-linkage to E–W-striking, basement-involved faults that formed during the initial Tithonian–Barremian rifting event in the Otway Basin. Fault displacement analysis suggests four key stages in the post-Cenomanian growth history of the upper array: (1) nucleation of the majority of faults resulting from resumed crustal extension during the early Late Cretaceous; (2) an intra-Late Cretaceous period of general fault dormancy, with the nucleation of only one newly formed fault; (3) latest Cretaceous nucleation of another newly formed fault and further growth of all other faults; and (4) continued growth of all faults, leading to the formation of the Cenozoic Gambier Sub-basin in the Otway Basin. Our analysis also demonstrates that Late Cretaceous faults, which are located above and dip-link to basement-involved faults, display earlier nucleation and greater overall throw and length, compared with those which do not link to basement-involved faults. This is likely attributed to increased rift-related stress concentrations in cover sediments above the upper tips of basement faults. This study improves our understanding of the geological evolution of the presently under-explored Gambier Embayment, offshore Otway Basin, South Australia by documenting the segmented growth style of a Late Cretaceous normal fault array that is located over, and interacts with, a reactivated basement framework.  相似文献   

16.
以野外露头、岩心观察为基础,结合录井、测井及粒度分析,认为叶城凹陷下白垩统克孜勒苏群发育进积型扇三角洲,划分出扇三角洲平原与扇三角洲前缘水下分流河道、分流间湾与河口坝。扇三角洲平原受重力流作用明显;扇三角洲前缘主要受牵引流作用,在盆地的短轴方向延伸范围较小,而在长轴方向延伸范围较大,与相邻扇三角洲前缘朵叶叠置连片。扇三角洲由山前向断陷湖盆进积,在盆地的短轴方向构成一侧为陡坡、另一侧为宽缓斜坡的单断式断陷盆地充填模式。这种沉积模式不仅控制了扇三角洲各亚相单元的发育特征,而且对微相类型与砂体分布有控制作用。  相似文献   

17.
The Gorgon Platform is located on the southeastern edge of the Exmouth Plateau in the North Carnarvon Basin, North West Shelf, Australia. A structural analysis using three-dimensional (3D) seismic data has revealed four major sets of extensional faults, namely, (1) the Exmouth Plateau extensional fault system, (2) the basin bounding fault system (Exmouth Plateau–Gorgon Platform Boundary Fault), (3) an intra-rift fault system in the graben between the Exmouth Plateau and the Gorgon Platform and (4) an intra-rift fault system within the graben between the Exmouth Plateau and the Exmouth Sub-basin. Fault throw-length analyses imply that the initial fault segments, which formed the Exmouth Plateau–Gorgon Platform Boundary Fault (EG Boundary Fault), were subsequently connected vertically and laterally by both soft- and hard-linked structures. These major extensional fault systems were controlled by three different extensional events during the Early and Middle Jurassic, Late Jurassic and Early Cretaceous, and illustrate the strong role of structural inheritance in determining fault orientation and linkage. The Lower and Middle Jurassic and Upper Jurassic to Lower Cretaceous syn-kinematic sequences are separated by unconformities.  相似文献   

18.
《Geodinamica Acta》2013,26(3-4):255-282
The Lycian molasse basin of SW Turkey is a NE-SW-oriented basin that developed on an imbricated basement, comprising the allochthonous Mesozoic rocks of the Lycian nappes and Palaeocene-Eocene supra-allochthonous sediments. The imbricated basement has resulted from a complex history related to the emplacement of different tectonic units from Late Cretaceous to Late Eocene. Following imbrication, extensional collapse of the Lycian orogen resulted in extensive emergent areas, some of which coincide with present-day mountains. These were surrounded by interconnected depressions, namely, the Kale-Tavas, Çardak-Dazk?r? and Denizli subbasins.

The Lycian molasse sequence contains a relatively complete record of the tectonic history of the Lycian orogenic collapse from which it was derived. The sequence is characterised by interdependence between tectonism and sedimentation, the latter of which includes fining-and coarsening-upward sedimentary cycles with syn-depositional intrabasinal unconformities.

The Denizli subbasin consists of thick, coarse-grained wedges of alluvial fans and fine-grained fan-delta deposits formed in a shallowmarine environment. Some areas of the fan deltas were colonised by corals, red algae and foraminifera, forming patch reefs.

The first phase of extensional collapse in the region is marked by the Lycian orogenic collapse, which may have been initiated by the beginning of the Oligocene (Rupelian), following the main Menderes metamorphism. Starting in the latest Early Miocene or in the Middle Miocene, the area of the molasse basin was subject to deformation with the Lycian nappes, and to erosion as well. At that time, the Lycian nappes, with some ophiolitic assemblages, were thrust over the molasse deposits and thus, NE-SW-trending folds were formed. The molasse deposits and thrust-related deformational structures were then unconformably covered by Upper Miocene continental deposits which belong to the neotectonic period of SW Turkey. The second phase of extensional collapse is marked by granitic intrusions and the formation of Miocene detachment-related extensional basins. This phase may have been related to the exhumation of the gneissic core of the Menderes Massif, from which fragments were derived and incorporated into the upper parts of the Denizli subbasin during the Aquitanian.  相似文献   

19.
《International Geology Review》2012,54(12):1419-1442
The Palaeogene deposits of the Thrace Basin have evolved over a basement composed of the Rhodope and Sakarya continents, juxtaposed in northwest Turkey. Continental and marine sedimentation began in the early Eocene in the southwest part, in the early-middle Eocene in the central part, and in the late Lutetian in the north-northeast part of the basin. Early Eocene deposition in the southern half of the present Thrace Basin began unconformably over a relict basin consisting of uppermost Cretaceous–Palaeocene pelagic sediments. The initial early-middle Eocene deposition began during the last stage of early Palaeogene transtension and was controlled by the eastern extension (the Central Thrace Strike–Slip Fault Zone) of the Balkan-Thrace dextral fault to the north. Following the northward migration of this faulting, the Thrace Palaeogene Basin evolved towards the north during the late Lutetian. From the late Lutetian to the early Oligocene, transpression caused the formation of finger-shaped, eastward-connected highs and sub-basins. The NW–SE-trending right-lateral strike–slip Strandja Fault Zone began to develop and the Strandja Highland formed as a positive flower structure that controlled the deposition of the middle-upper Eocene alluvial fans in the northern parts of the Thrace Palaeogene Basin. Also, in the southern half of the basin, the upper Eocene–lower Oligocene turbiditic series with debris flows and olistostrome horizons were deposited in sub-basins adjacent to the highs, while shelf deposits were deposited in the northern half and southeast margin of the basin. At least since the early Eocene, a NE-trending magmatic belt formed a barrier along the southeast margin of the basin. From the late Oligocene onwards, the Thrace Palaeogene Basin evolved as an intermontane basin in a compressional tectonic setting.  相似文献   

20.
The selection of the disposal site is probably the most important step in the development of solid waste management. In site selection, geology plays a determining role. This study evaluates the characteristics of the environment on the basis of the geological, hydrogeological and geo-engineering properties of the solid waste site of the Sivas city, Turkey. The area is underlain by the Oligocene-Miocene rocks which have limited aquifer properties. Thin Quaternary alluvium and soil cover overlie the Oligo-Miocene rocks, which are represented as well graded sand and inorganic silt of low plasticity. The Quaternary alluvium and soil cover are classified as inorganic clays having a low plasticity and the permeability varies from 1.2×10−6 to 3.11×10−6 m/s. These values are much higher than 1×10−8 m/s, which is accepted for waste disposal standards. Seepage waters have a potential to pollute the ground water and the Kızılırmak River, which is 500 m to the southwest of the waste disposal area and because the disposal site is close to the river, the potential for flash flooding poses a high pollution risk. The waste disposal area must be covered by clay layers or an impervious artificial membrane. In addition, seepage must be controlled and removed from the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号