首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of Population I stars (X = 0.7, Z = 0.02) with initial masses 40M M ZAMS ≤ 120M until core hydrogen exhaustion has been computed. Models of evolutionary sequences have been used as the initial conditions in solving the equations of radiation hydrodynamics that describe the spherically symmetric motion of a self-gravitating gas. Stars with initial masses M ZAMS ≥ 50M are shown to become unstable against radial oscillations during the main-sequence evolution. The instability growth rate and the limit-cycle oscillation amplitude increase as the star evolves and as its initial mass increases. The pulsational instability is attributable to the iron Z-bump κ mechanism (T ∼ 2 × 105 K). Convection that transfers from 20 to 50% of the total energy flux and, thus, reduces the efficiency of the κ mechanism emerges in the same layers. The periods of the radial oscillations of main-sequence stars lie within the range from 0.09 to 8 days. The boundaries of the instability region of radial pulsations in the Hertzsprung-Russell diagram have been determined and observational criteria for revealing pulsating variable main-sequence stars have been proposed.  相似文献   

2.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

3.
Instability of population I (X = 0.7, Z = 0.02) massive stars against radial oscillations during the post-main-sequence gravitational contraction of the helium core is investigated. Initial stellar masses are in the range 65M M ZAMS ≤ 90M . In hydrodynamic computations of self-exciting stellar oscillations we assumed that energy transfer in the envelope of the pulsating star is due to radiative heat conduction and convection. The convective heat transfer was treated in the framework of the theory of time-dependent turbulent convection. During evolutionary expansion of outer layers after hydrogen exhaustion in the stellar core the star is shown to be unstable against radial oscillations while its effective temperature is T eff > 6700 K for M ZAMS = 65M and T eff > 7200 K for M ZAMS = 90M . Pulsational instability is due to the κ-mechanism in helium ionization zones and at lower effective temperature oscillations decay because of significantly increasing convection. The upper limit of the period of radial pulsations on this stage of evolution does not exceed ≈200 day. Radial oscillations of the hypergiant resume during evolutionary contraction of outer layers when the effective temperature is T eff > 7300 K for M ZAMS = 65M and T eff > 7600 K for M ZAMS = 90M . Initially radial oscillations are due to instability of the first overtone and transition to fundamental mode pulsations takes place at higher effective temperatures (T eff > 7700 K for M ZAMS = 65M and T eff > 8200 K for M ZAMS = 90M ). The upper limit of the period of radial oscillations of evolving blueward yellow hypergiants does not exceed ≈130 day. Thus, yellow hypergiants are stable against radial stellar pulsations during the major part of their evolutionary stage.  相似文献   

4.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

5.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

6.
The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [{Ba/Mg}]--[{Mg/H}] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass M ms ≤ 18 M are infertile sources and the SNe II with 20 M M ms ≤ 40 M are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20 M M ms ≤ 40 M with compared to the all massive stars is about∼ 18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced.  相似文献   

7.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

8.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

9.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

10.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

11.
The ionizing star BD+60°2522 is known as the central star of Bubble Nebulae NGC 7635—wind-blown bubble created by the interaction of the stellar wind of BD+60°2522 (O6.5 IIIef, V=8.7 mag, mass loss rate 10−5.76 M /year) with the ambient interstellar medium. From the evolutionary calculations for the star with mass loss and overshooting, we find that the initial mass of the star is 60M , its present age is 2.5×106 years, and the present mass is 45M .  相似文献   

12.
We investigate the relative motion of three stars, ADS 7446, 9346, and 9701, based on long-term observations with the Pulkovo 26-inch refractor. The relative motion of all three stars shows a perturbation that could be produced by the gravitational influence of an invisible companion. For ADS 7446, we have determined the orbit of the photocenter with a period of 7.9 yr; the mass of the companion is more than 0.4M . For ADS 9346, we have determined the radial velocities of the components: −14.60 km s−1 for A and −13.94 km s−1 for B. For ADS 9346 and 9701, we have determined the dynamical parallaxes, 24 and 20 mas, respectively, which are larger than those in the Hipparcos catalog by 5 mas, and calculated the orbits by the apparent motion parameter (AMP) method. The new orbit of ADS 9346 is: a = 5″.2, P = 2035 yr, and e = 0.46 at the system’s mass M = 2.5M . The new orbits of ADS 9701 are: (a = 2″.9, P = 829 yr, e = 0.54, M = 4.3M ) and (a = 3″.8, P = 1157 yr, e = 0.53, M = 5.0M ).  相似文献   

13.
We investigate numerically the chemodynamical evolution of major disc–disc galaxy mergers in order to explore the origin of the mass-dependent chemical, photometric and spectroscopic properties observed in elliptical galaxies. We investigate especially the dependence of the fundamental properties on merger progenitor disc mass (M d). Three main results are obtained in this study:– More massive (luminous) ellipticals formed by galaxy mergers between more massive spirals have higher metallicity (Z) and thus show redder colours; the typical metallicity ranges from ∼ 1.0 solar abundance (Z∼ 0.02) for ellipticals formed by mergers with M d = 1010 M to ∼ 2.0 solar (Z∼ 0.04) for those with M d= 1012 M .– Both the Mg2 line index in the central part of ellipticals (R ≤ 0.1 R e) and the radial gradient of Mg2 (δ Mg2 / δ log R) are more likely to be larger for massive ellipticals. δ Mg2 / δ log R correlates reasonably well with the central Mg2 in ellipticals. For most of the present merger models, ellipticals show a positive radial gradient of the Hβ line index. – Both M/L B and M/L K (where M, L B, and L K are the total stellar mass of galaxy mergers, the B-band and the K-band luminosities, respectively) depend on galactic mass in such a way that more massive ellipticals have larger M/L B and smaller M/L K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
On the basis of the published times of minima and our own observations, we analysed the period change of the Algol-type eclipsing binary CU Pegasi. Over almost seventy years of observations, the parabolic period change has been clearly seen as dP/dt = 1.38 × 10−6 d/year. The estimated mass transfer in the system is about 1 × 10−7 MM⊙/year.  相似文献   

15.
The absolute magnitudeM v of the hydrogen deficient binary υ Sgr has been estimated as -4.8 ± 1.0 from the distribution of the interstellar reddening, polarization and interstellar lines of the surrounding stars. From the ANS observations obtained at the time of the secondary eclipse, it appears that the hotter secondary is surrounded by a disc with colours of a B8-B9 star. The λ 1550 CIv absorption line arising in the stellar wind does not show any change in strength during the secondary minimum. The upper limit to the mass-loss rate from the high temperature wind is estimated as ≤ 5 × 10-7 M⊙ yr-1 from the 2 cm and 6 cm radio observations. Based on observations obtained with the Astronomical Netherlands Satellite and VLA. The National Radio Astronomy Observatory’s Very Large Array at Socorro, New Mexico is operated by Associated Universities Inc. under contract with the National Science Foundation.  相似文献   

16.
We investigate the formation by accretion of massive primordial protostars in the range 10 to 300 M . The high accretion rate used in the models (M = 4.4 x 10-3 M yr-1) causes the structure and evolution to differ significantly from those of both present-day protostars and primordial zero-age main sequence stars. The stellar surface is not visible throughout most of the main accretion phase, since a photosphere is formed in the in falling envelope. Significant nuclear burning does not take place until a protostellar mass of about 80 M . As the interior luminosity approaches the Eddington luminosity, the protostellar radius rapidly expands owing to the radiation pressure. Eventually, a final swelling occurs when the stellar mass reaches about 300 M . This expansion is likely to signal the end of the main accretion phase, thus setting an upper limit to the protostellar mass formed in these conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M), 17 Thetis (6.17 ± 0.64 × 10-13 M), 19 Fortuna (5.41 ± 0.76 × 10-12 M), and 189 Phthia (1.87 ± 0.64 × 10-14 M) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.  相似文献   

18.
Wolf-Rayet stars     
This paper reviews the current status of knowledge regarding the basic physical and chemical properties of Wolf-Rayet stars; their overall mass loss and stellar wind characteristics and current ideas about their evolutionary status. WR stars are believed to be the evolved descendents of massive O-type stars, in which extensive mass loss reveals successive stages of nuclear processed material: WN stars the products of interior CNO-cycle hydrogen burning, and WC and WO stars the products of interior helium burning. Recent stellar evolution models, particularly those incorporating internal mixing, predict results which are in good accord with the different chemical compositions observationally inferred for WN, WC and WO stars. WR stars exhibit the highest levels of mass loss amongst earlytype stars: mass loss rates, typically, lie in the range [1–10]×10−5 M yr−1. Radiation pressure-driven winds incorporating multi-scattering in high ionisation-stratified winds may cause these levels, but additional mechanisms may also be needed.  相似文献   

19.
We present a variety of well behaved classes of Charge Analogues of Tolman’s iv (1939). These solutions describe charged fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. These solutions give us wide range of parameter for every positive value of n for which the solution is well behaved hence, suitable for modeling of super dense stars. keeping in view of well behaved nature of these solutions, one new class of solutions is being studied extensively. Moreover, this class of solutions gives us wide range of constant K (0.3≤K≤0.91) for which the solution is well behaved hence, suitable for modeling of super dense stars like Strange Quark stars, Neutron stars and Pulsars. For this class of solutions the mass of a star is maximized with all degree of suitability, compatible with Quark stars, Neutron stars and Pulsars. By assuming the surface density ρ b =2×1014 g/cm3 (like, Brecher and Caporaso in Nature 259:377, 1976), corresponding to K=0.30 with X=0.39, the resulting well behaved model has the mass M=2.12M Θ, radius r b ≈15.27 km and moment of inertia I=4.482×1045 g cm2; for K=0.4 with X=0.31, the resulting well behaved model has the mass M=1.80M Θ, radius r b ≈14.65 km and moment of inertia I=3.454×1045 g cm2; and corresponding to K=0.91 with X=0.135, the resulting well behaved model has the mass M=0.83M Θ, radius r b ≈11.84 km and moment of inertia I=0.991×1045 g cm2. For n=0 we rediscovered Pant et al. (in Astrophys. Space Sci. 333:161, 2011b) well behaved solution. These values of masses and moment of inertia are found to be consistent with other models of Neutron stars and Pulsars available in the literature and are applicable for the Crab and the Vela Pulsars.  相似文献   

20.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号