首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural analysis in the well-exposed and well-preserved Neyriz ophiolite suggests that it is a relatively undisturbed piece of oceanic lithosphere. Detailed structural mapping of high-T deformation mantle flow revealed the presence of three elliptical shaped diapirs trending NW–SE. These diapirs are characterized by vertical mantle foliations associated with vertical plunging stretching lineations, which progressively incline toward parallelism with the gently NE-dipping Moho. The NW–SE direction of asthenospheric upwelling of diapirs is parallel with the orientations of the vertical sheeted dike complex. This suggests that the Neyriz ophiolite was created by two NW–SE palaeo-ridge axes. These palaeo-ridges are classified as fast-spreading ridges. These ridges are segmented by a dextral palaeo-transform fracture zone. This is consistent with fast-spreading ridges. Comparison between the Neyriz and Oman ophiolites reveals that they show similar characteristics. Most of the Oman palaeo-ridge systems are oriented NW–SE and NNW–SE. They also display similar sheeted dike complex orientations and crustal thickness variations. These two ophiolites originally were part of the Neo-Tethyan oceanic lithosphere and afterwards were separated by the Oman line during continental collision of the Iranian micro-continent and Afro-Arabian continent.  相似文献   

2.
Ophiolites worldwide show striking diversities in their rock assemblage and structure (i.e., ophiolite diversity), raising a question whether ophiolites are originally similar before intense tectonic dismemberment. Comparison between ophiolites and oceanic lithospheres at modern mid-ocean ridges may provide key constraints on the origin of ophiolite diversity, because oceanic lithospheric structures are inherently controlled by spreading rates. Here, we present a case study of the Xigaze ophiolite in southern Tibet focusing on its gabbroic intrusions outcropping in three localities, i.e., Dazhuqu, Baigang and Jiding. Compared to the Jiding sequence, the Dazhuqu and Baigang gabbroic rocks are less evolved, characterized by higher Cr2O3 contents but lower contents of TiO2 and rare earth element in both clinopyroxene and bulk compositions. It is evident, hence, that the Xigaze ophiolite is characterized by variably evolved and discontinuously distributed gabbroic intrusions, rather by a continuous lower oceanic crust between the mantle and sheeted dike complex as the Penrose-type ophiolites. Our study, along with the identification in previous studies of oceanic detachment faults within the Xigaze ophiolite, demonstrates that the Xigaze ophiolite shows close similarities to oceanic lithospheres at modern slow- and ultraslow-spreading ridges. Hence, the significant structural distinctions between the Xigaze ophiolite and the Penrose-type ophiolites (e.g., the Oman ophiolite) may be inherently associated with different spreading rates of paleo-ridges. Considering the limited scale of the Xigaze gabbroic rocks, here we suggest the Xigaze ophiolite as a typical representative of fossil ultraslow-spreading ridges.  相似文献   

3.
日喀则蛇绿岩研究中的几个问题   总被引:6,自引:4,他引:2  
张旗 《岩石学报》2015,31(1):37-46
日喀则蛇绿岩是中国最著名的蛇绿岩,但是,许多问题存在争论,许多现象没有搞清楚。文中讨论了日喀则蛇绿岩中一些重要的现象以及对目前发现的许多矛盾如何考虑的问题。例如,(1)日喀则蛇绿岩中是否存在席状岩墙群?是否存在席状岩床群?本文认为,席状岩墙群应当是存在的,因为有不对称冷凝边出现。而席状岩床群可能是有问题的,岩床作为侵入体可以出现在许多地方,但是,蛇绿岩中不可能出现席状岩床群,尤其还把它作为蛇绿岩岩石组合的一个单元。笔者认为,所谓的席状岩床群可能是席状岩流群,它不是一个独立的单元,是玄武岩单元下部的成员。(2)日喀则蛇绿岩是否统统是蛇绿岩是一个需要考虑的问题,雅鲁藏布江东西两段出现的岩石组合及其产出背景与日喀则地区的蛇绿岩明显不同,其中有些可能未必是蛇绿岩。(3)自1972年彭罗斯会议以来,蛇绿岩研究发展到现在,可能已经进入了一个关键时期。文中回顾了蛇绿岩的定义及其构造意义,指出1972年彭罗斯会议关于蛇绿岩的定义仍然是适用的。蛇绿岩可以概括为洋壳+地幔,这个洋壳来自板块扩张脊,是年轻的;这个地幔是大洋岩石圈地幔,也可能保留有古老岩石圈地幔的印记。蛇绿岩产于板块扩张脊,这是蛇绿岩构造含义的唯一解,蛇绿岩不存在多解性。(4)日喀则蛇绿岩的许多基本观点主要是法国学者提出来的,如关于岩床群的见解,慢速扩张的见解等。但是,上述见解是否都是对的是需要思考的。日喀则蛇绿岩具有得天独厚的条件,我们应当很好利用这个条件,努力把我们的研究做好,为全球蛇绿岩研究贡献我们的一份力量。  相似文献   

4.
《International Geology Review》2012,54(11):1395-1412
The Neyriz ophiolite along the northeast flank of the Zagros fold-thrust belt in southern Iran is an excellent example of a Late Cretaceous supra-subduction zone (SSZ)-related ophiolite on the north side of the Neotethys. The ophiolite comprises a mantle sequence including lherzolite, harzburgite, diabasic dikes, and cumulate to mylonitic gabbro lenses, and a crustal sequence comprising a sheeted dike complex and pillow lavas associated with pelagic limestone and radiolarite. Mantle harzburgites contain less CaO and Al2O3, are depleted in rare earth elements, and contain spinels that are more Cr-rich than lherzolites. Mineral compositions of peridotites are similar to those of both abyssal and SSZ- peridotites. Neyriz gabbroic rocks show boninitic (SSZ-related) affinities, while crustal rocks are similar to early arc tholeiites. Mineral compositions of gabbroic rocks resemble those of SSZ-related cumulates such as high forsterite olivine, anorthite-rich plagioclase, and high-Mg# clinopyroxene. Initial εNd(t) values range from +7.9 to +9.3 for the Neyriz magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic mid-ocean ridge basalts and with Semail and other Late Cretaceous Tethyan ophiolitic rocks. Initial 87Sr/86Sr ranges from 0.7033 to 0.7044, suggesting modification due to seafloor alteration. Most Neyriz magmatic rocks are characterized by less radiogenic 207Pb/204Pb (near the northern hemisphere reference line), suggesting less involvement of sediments in their mantle source. Our results for Neyriz ophiolite and the similarity to other Iranian Zagros ophiolites support a subduction initiation setting for its generation.  相似文献   

5.
Ron Harris 《Tectonophysics》2004,392(1-4):143
Analysis of internal structures of the Brooks Range ophiolite at the three largest and well-exposed klippen reveals a NE–SW structural grain that may parallel the original axis of magmatism of a slow spreading marginal ocean basin. Sub-parallel directions of lattice fabrics in olivine of mantle peridotite and shape fabrics in pyroxene and plagioclase of layered gabbro indicate that asthenospheric and magmatic flow was closely coupled. These structures, including the petrologic moho, mostly dip steeply to the NW and SE, with slightly oblique flow lineations. Sedimentary and volcanic cover deposits also dip SE. The few exposures found of sheeted dike complexes generally strike parallel, but dip orthogonal to both the petrologic moho and cover deposits. These structural features are locally disturbed by syn- and post-magmatic normal faults emblematic of slow-spreading ridge processes. However, the consistent geometry of structures over a distance of 200 km demonstrates not only that the magmatic system was organized in a similar manner to an oceanic ridge, but that there was little to no rotation of individual klippe during tectonic emplacement.Ductile fabrics related to tectonic emplacement yield top-to-the NNW sense of shear indicators. The basal thrust and accompanying serpentinized shear zone is mostly flat-lying and truncates the steeply dipping ductile fabric of the ophiolite. This relationship and paleomagnetic data from the igneous sequence suggest that flow fabrics were most likely moderately inclined at the time the ophiolite formed. Similar relationships are found at diapiric centers along oceanic ridges and in other ophiolite bodies.  相似文献   

6.
In his famous address to the Geological Society of America in 1957, H. H. Read concluded that 'there are granites and granites'. This is equally true for ophiolites, slices of oceanic lithosphere produced by sea-floor spreading and preserved by obduction during plate collision. Although they form in similar ways, it is clear that there are different types of ophiolite which originate under different conditions. Compared to the 'classic' ophiolites of Oman, many, such as those in the Alps, lack a sheeted dyke complex and were for a long time considered abnormal. Analogues for this type have now been found forming today and they occur when the rate of spreading is slow.  相似文献   

7.
蛇绿岩岩石组合及洋脊下岩浆作用   总被引:21,自引:0,他引:21  
蛇绿岩的岩石组合从下至上分为4个单元,即:变质橄榄岩单元、深成杂岩单元、席状岩墙群杂岩单元和喷出岩单元。各单元的岩石组合是多种多样的:变质橄榄岩单元主要由方辉橄榄岩、二辉橄榄岩和少量纯橄岩及斜长二辉橄榄岩组成;深成杂岩单元单元包括辉长岩-镁铁质堆晶岩和超镁铁质堆晶岩,在深成杂岩和席状岩墙群杂岩单元内在复杂的岩浆侵入事件;喷出岩单元不仅仅由玄武岩组成,还包括安山岩、玻安岩、钠长岩以及乐砾岩、凝灰岩等  相似文献   

8.
Structural mapping in the Southern half of the Oman ophiolite has revealed a palaeoridge organization with similarities to an EPR microplate, forming in superfast spreading conditions. A NW-trending propagator was rapidly opening in a lithosphere no more than 1 Myr older and itself created in a NE-SW ridge system. The NW-trending propagator, underlined by small mantle diapirs, was active or dying when detached as part of a future ophiolite. Local thrusting of the future ophiolite was also initiated very early, between 1 and 5 Myr after ridge accretion; it was accompanied by a 40° rotation within this time lapse. Such an activity supports the comparison of the Oman palaeoridge system with an oceanic microplate, and provides evidence to suggest the existence of thrusts at active microplates.  相似文献   

9.
Structural and fabric analysis of the well-exposed Hilti mantlesection, Oman ophiolite, suggests that shear zone development,which may have resulted from oceanic plate fragmentation, wasinfluenced by pre-existing mantle fabric present at the paleo-ridge.Detailed structural mapping in the mantle section revealed agently undulating structure with an east–west flow direction.A NW–SE strike-slip shear zone cuts across this horizontalstructure. The crystal preferred orientation (CPO) of olivinewithin the foliation is dominated by (010) axial patterns ratherthan more commonly observed (010)[100] patterns, suggestingthat the horizontal flow close to the Moho involved non-coaxialflow. Olivine CPO within the shear zone formed at low temperatureis characterized by (001)[100] patterns and a sinistral senseof shear. The olivine CPO becomes weaker with progressive mylonitizationand accompanying grain size reduction, and ultimately developsinto an ultra-mylonite with a random CPO pattern. The olivine[010]-axis is consistently sub-vertical, even where the horizontalfoliation has been rotated to a sub-vertical orientation withinthe shear zone. These observations suggest that the primarymechanical anisotropy (mantle fabric) has been readily transformedinto a secondary structure (shear zone) with minimum modification.This occurred as a result of a change of the olivine slip systemsduring oceanic detachment and related tectonics during cooling.We propose that primary olivine CPO fabrics may play a significantrole in the subsequent structural development of the mantle.Thus, the structural behavior of oceanic mantle lithosphereduring subduction and obduction may be strongly influenced byinitial mechanical anisotropy developed at an oceanic spreadingcenter. KEY WORDS: mantle lithosphere; anisotropy; shear zone; olivine CPO; Oman ophiolite  相似文献   

10.
The Late Ordovician Solund-Stavfjord ophiolite in western Norway represents a remnant of the Iapetus oceanic lithosphere that developed in a Caledonian marginal basin. The ophiolite contains three structural domains that display distinctively different crustal architecture that reflects the mode and nature of magmatic and tectonic processes operated during the multi-stage seafloor spreading evolution of this marginal basin. Domain I includes, from top to bottom, an extensive extrusive sequence, a transition zone consisting of dike swarms with screens of pillow breccias, a sheeted dike complex, and plutonic rocks composed mainly of isotropic gabbro and microgabbro. Extrusive rocks include pillow lavas, pillow breccias, and massive sheet flows and are locally sheared and mineralized, containing epidosites, sulfide-sulfate deposits, Fe-oxides, and anhydrite veins, reminiscent of hydrothermal alteration zones on the seafloor along modern mid-ocean ridges. A fossil lava lake in the northern part of the ophiolite consists of a >65-m-thick volcanic sequence composed of a number of separate massive lava units interlayered with pillow lavas and pillow breccia horizons. The NE-trending sheeted dike complex contains multiple intrusions of metabasaltic dikes with one- and two-sided chilled margins and displays a network of both dike-parallel normal and dike-perpendicular oblique-slip faults of oceanic origin. The dike-gabbro boundary is mutually intrusive and represents the root zone of the sheeted dike complex. The internal architecture and rock types of Domain I are analogous to those of intermediate-spreading oceanic crust at modern mid-ocean ridge environments. The ophiolitic units in Domain II include mainly sheeted dikes and plutonic rocks with a general NW structural grain and are commonly faulted against each other, although primary intrusive relations between the sheeted dikes and the gabbros are locally well preserved. The exposures of this domain occur only in the northern and southern parts of the ophiolite complex and are separated by the ENE-trending Domain III, in which isotropic to pegmatitic gabbros and dike swarms are plastically deformed along ENE-striking sinistral shear zones. These shear zones, which locally include fault slivers of serpentinite intrusions, are crosscut by N20°E-striking undeformed basaltic dike swarms that contain xenoliths of gabbroic material. The NW-trending sheeted dike complex in the northern part of Domain II curves into an ENE orientation approaching Domain III in the south. The anomalous nature of deformed crust in Domain III is interpreted to have developed within an oceanic fracture zone or transform fault boundary.REE chemistry of representative extrusive and dike rocks from all three domains indicates N- to E-MORB affinities of their magmas with high Th/Ta ratios that are characteristic of subduction zone environments. The magmatic evolution of Domain I encompasses closed-system fractional crystallization of high-Mg basaltic magmas in small ephemeral chambers, which gradually interconnected to form large chambers in which mixing of primary magmas with more evolved and fractionated magma caused resetting of magma compositions through time. The compositional range from high-Mg basalts to ferrobasalts within Domain I is reminiscent of modern propagating rift basalts. We interpret the NE-trending Domain I as a remnant of an intermediate-spread rift system that propagated northeastwards (in present coordinate system) into a pre-existing oceanic crust, which was developed along the NW-trending doomed rift (Domain II) in the marginal basin. The N20°E dikes laterally intruding into the anomalous oceanic crust in Domain III represent the tip of the rift propagator. The inferred propagating rift tectonics of the Solund-Stavfjord ophiolite is similar to the evolutionary history of the modern Lau back-arc basin in the SW Pacific and suggests a complex magmatic evolution of the Caledonian marginal basin via multi-stage seafloor spreading tectonics.  相似文献   

11.
The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).  相似文献   

12.
In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.  相似文献   

13.
Island arc elements and arc-related ophiolites   总被引:1,自引:0,他引:1  
All major structural elements in island arc systems, fore-arc, magmatic arc, back-arc basins and remnant arcs, are potential ophiolite sources, and those features that allegedly characterise ophiolites of ocean-ridge origin, sheeted dyke complexes, mantling pelagic rocks, hydrothermal metamorphism and associated mineralization, can also arise within arc settings. Age relations are critical in the interpretation of arc-related ophiolites. Remnants of oceanic lithosphere, identified by a pre-arc initiation age, are restricted to fore-arc, magmatic arc and remnant arc elements, as are ophiolite masses generated at the inception of underthrusting. The latter, apparently common in ancient fore-arc terrains, form in nascent arc systems in which the rate of role back of the subduction hinge exceeds the rate of convergence. Spreading occurs above a foundering slab resulting in some arc-like compositional features. In simple arc systems later ophiolitic rocks have formed either in the active back-arc basin or the magmatic arc. Only those ophiolites that have resided within or very close behind magmatic arcs should show calcalkaline or arc tholeiite magmatic affinities, or be intruded or overlain by these rocks. Volcanic-derived sediment or pelagic material may mantle ophiolites from all arc settings, but pelagic rocks will generally dominate in stratigraphic sequences above remnant arcs and on back-arc basin floors except adjacent to the magmatic arc. Ophiolites generated at major ocean ridges are unlikely to be immediately overlain by sediment with a significant volcanic component whereas such detritus may lie directly on arc-inception, arc and back-arc ophiolites. Some arc-derived ophiolites are preserved in their original tectonic position, others can be identified from their internal features, their relationship to other tectonic elements, and the nature of associated rocks.  相似文献   

14.
蛇绿岩的分类   总被引:17,自引:0,他引:17       下载免费PDF全文
张旗 《地质科学》1990,(1):54-61
文中把蛇绿岩分为三类:科迪勒拉型、东地中海型和西地中海型。科迪勒拉型蛇。绿岩通常构成构造地层地体的基底,岩石序列中有相当数量的富Si质岩石出现,大多与岛弧或弧间盆地环境有关。东地中海型蛇绿岩以产出较强烈亏损的地幔岩和低Ti玄武岩以及玻安岩为特征,产于洋内消减带之上的岛弧和弧后盆地环境。西地中海型以阿尔卑斯蛇绿岩和横断山区古特提斯蛇绿岩为代表,地幔岩亏损较弱,玄武岩则是MORB型的,形成于小洋盆或转换断层环境。  相似文献   

15.
Podiform chromitites are diagnostic but rare features of Phanerozoic ophiolites, and often contain the most pristine textural, chemical and isotopic record of convective upper mantle conditions extant during ophiolite genesis. Ophiolitic podiform chromitites, owing to their high Os concentrations and low Re/Os ratios provide the best evidence for the Os-isotopic evolution of oceanic mantle, but established records of ophiolitic chromites from bona fide Archean ophiolites are still lacking. We report Re–Os isotopic compositions of the world's oldest known ophiolitic podiform chromites from the 2.5 billion year old Dongwanzi–Zunhua ophiolite, North China. This provides the oldest Os isotope composition for the convective upper mantle yet obtained from ophiolitic podiform chromitites, and reveals a chondritic Os isotopic composition of the Archean convective upper mantle.  相似文献   

16.
The Taitao ophiolite of southern Chile lies 10 km from the buried extension of the Peru-Chile trench, and less than 50 km from the present position of the Nazca/South America/Antarctica triple junction. Plio-Pleistocene radiometric and paleontologic ages indicate its formation during ridge subduction, and an ultramafic rock, gabbro, sheeted dike, volcanic and sedimentary rock psuedostratigraphy suggests formation by typical accretionary processes for oceanic lithosphere. Yet major and trace element data show that mafic dikes and volcanic units are transitional from MORB to IAT, and there are abundant silicic volcanic units of calc-alkaline character that have high LIL element and light REE concentrations relative to oceanic plagiogranites. Sr and Nd isotopic data are consistent with that of modern oceanic suites, even though having a greater internal variability. Silicic volcanic units show the more enriched Sr and depleted Nd isotopic ratios relative to dike and gabbro samples. In addition to chemical distinctions, paleobathymetric data support a shallow water origin for some of the upper volcanic units and, assuming local compensation, suggest crustal thicknesses of continental proportion. In the vicinity of the Taitao ophiolite, and extending some 40 km landward of the plate margin, are a series of silicic stocks, sills, and plutons that were intruded into the forearc at the time of ridge collision and ophiolite generation. These calc-alkaline I-type granitoids are light REE enriched and have Sr and Nd isotopic compositions similar to those of the main volcanic chain 200 km landward. Chemically, some of the silicic intrusions are indistinguishable from volcanic units of the ophiolite. In general, major, trace, REE, and isotopic variations of both the ophiolite and the distributed intrusions are atypical of simple fractionation trends for basaltic liquids. Intermediate to silicic units lie along mixing hyperbolae between Taitao gabbro and either forearc sediment or metamorphic basement on a Nd---Sr correlation diagram, and these two crustal components support, respectively, either a 10–25% or 5–10% assimilation. Shutdown of magmatism, and therefore probably partial melting as well, appears to occur within 40 km of the trench, roughly spanning the depth interval for the disappearance of the plagioclase-lherzolite stability field as the zone of mantle upwelling is overridden by an increasing thickness of continental lithosphere. A deeper and more landward absence of partial melt related to the subducted ridge is supported by the correlation of the shutoff and re-initiation of arc volcanism over the northern and southern trailing edges of the postulated subcontinental asthenospheric window. Here, as well as elsewhere in the circum-Pacific, the general restriction of magmatism related to ridge subduction to near-trench settings supports a shallow (0 to 15 km) shutoff mechanism for adiabatic decompressive melting and a rather abrupt return to single-phase (solid) convective rise of mantle into an evolving asthenospheric window.  相似文献   

17.
The Khan-Taishir ophiolitic complex is situated within Early Caledonian structures of Western Mongolia. It consists (from below upward) of strongly differentiated ultramafics (dunites and harzburgites), pyroxenites and gabbro, sheeted dikes, pillow lavas and sediments, including in their uppermost part archaeocyatic limestones of Lower Cambrian age. Geological, petrochemical and geochemical data indicate that the ultramafics are turn off from the overlying ophiolitic sequence. Igneous rocks of the ophiolitic complex, except the ultramafics, were formed by two-stage differentiation of mantle magma of quartz-tholeiitic composition exhausted in potassium and titanium. Pyroxenites and gabbro with an anorthositic trend of differentiation were generated during the first stage, and sheeted dikes and pillow lavas with a quartz trend of differentiation were formed during the second one. Ophiolites of the Khan-Taishir complex petrochemically and geochemically differ strongly from mafic and ultramafic rocks of midoceanic ridges. Together with ophiolites of the Troodos complex (Cyprus) and Macquarie Island (eastern Indian Ocean) they constitute the special type of ophiolite peculiar rather to slip boundaries of lithosphere plates. The other type of ophiolite, including complexes like the Dzolen complex of south Mongolia, contains poorly differentiated ultramafics and does not contain sheeted dikes; while the igneous rocks are very similar to mafic and ultramafic rocks dredged from midoceanic and formed probably in midoceanic ridge environments as well.  相似文献   

18.
Speculations on the nature and cause of mantle heterogeneity   总被引:8,自引:0,他引:8  
Hotspots and hotspot tracks are on, or start on, preexisting lithospheric features such as fracture zones, transform faults, continental sutures, ridges and former plate boundaries. Volcanism is often associated with these features and with regions of lithospheric extension, thinning, and preexisting thin spots. The lithosphere clearly controls the location of volcanism. The nature of the volcanism and the presence of ‘melting anomalies’ or ‘hotspots’, however, reflect the intrinsic chemical and lithologic heterogeneity of the upper mantle. Melting anomalies—shallow regions of ridges, volcanic chains, flood basalts, radial dike swarms—and continental breakup are frequently attributed to the impingement of deep mantle thermal plumes on the base of the lithosphere. The heat required for volcanism in the plume hypothesis is from the core. Alternatively, mantle fertility and melting point, ponding and focusing, and edge effects, i.e., plate tectonic and near-surface phenomena, may control the volumes and rates of magmatism. The heat required is from the mantle, mainly from internal heating and conduction into recycled fragments. The magnitude of magmatism appears to reflect the fertility, not the absolute temperature, of the asthenosphere. I attribute the chemical heterogeneity of the upper mantle to subduction of young plates, aseismic ridges and seamount chains, and to delamination of the lower continental crust. These heterogeneities eventually warm up past the melting point of eclogite and become buoyant low-velocity diapirs that undergo further adiabatic decompression melting as they encounter thin or spreading regions of the lithosphere. The heat required for the melting of cold subducted and delaminated material is extracted from the essentially infinite heat reservoir of the mantle, not the core. Melting in the upper mantle does not requires the instability of a deep thermal boundary layer or high absolute temperatures. Melts from recycled oceanic crust, and seamounts—and possibly even plateaus—pond beneath the lithosphere, particularly beneath basins and suture zones, with locally thin, weak or young lithosphere. The characteristic scale lengths—150 to 600 km—of variations in bathymetry and magma chemistry, and the variable productivity of volcanic chains, may reflect compositional heterogeneity of the asthenosphere, not the scales of mantle convection or the spacing of hot plumes. High-frequency seismic waves, scattering, coda studies and deep reflection profiles are needed to detect the kind of chemical heterogeneity and small-scale layering predicted from the recycling hypothesis.  相似文献   

19.
Mafic-ultramafic fragments of a dismembered ophiolite complex are abundant in the late Precambrian Pan African belt of the Eastern Desert of Egypt and north-east Sudan. The ultramafic bodies in the Eastern Desert of Egypt are mostly characterised by the harzburgite–dunite–chromitite association. Because of their severe metamorphism, almost all primary silicates were converted to secondary minerals and we use the chrome spinel as a reliable petrogenetic indicator. The podiform chromitite deposits are common as small and irregularly shaped masses in the central and southern parts of the Eastern Desert. They strongly vary in texture, degree of alteration and chemical composition of chrome spinel. The podiform chromitites exhibit a wide range of composition from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.65 to 0.85 in dunite, quite similar in the high-Cr chromitite, whereas it is around 0.5 in harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel are reported for the first time from the Pan African Proterozoic podiform chromitites. The petrological characteristics of Pan African podiform chromitites and associated peridotites of Egypt are similar to those of Phanerozoic ophiolites. The Proterozoic podiform chromitites may have formed in the same way as the Phanerozoic ones, namely by melt-harzburgite reaction and subsequent melt mixing. The similarity of the mantle section of the late Proterozoic and the Phanerozoic ophiolites suggests that the thermal conditions controlling genesis of the crust–mantle system basically have not changed since the late Proterozoic era. The Pan African harzburgite is very similar to abyssal peridotite at fast-spreading ridges, and the high-Cr, low-Ti character of spinel in chromitite and dunite indicates a genetic link with a supra-subduction zone setting. The late Proterozoic ophiolites of Egypt are possibly a fragment of oceanic lithosphere modified by arc-related magmatic rocks, or a fragment of back-arc basin lithosphere. Received: 26 October 1999 / Accepted: 28 June 2000  相似文献   

20.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号