首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titan’s optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan’s atmosphere is optically thick and only ~10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon’s lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan’s atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E. [2008a]. Planet. Space Sci. 56, 624–247; Tomasko, M.G. et al. [2008b]. Planet. Space Sci. 56, 669–707). Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, C.A., Tomasko, M.G., Engel, S., See, C., Doose, L., Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352–365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 μm, are derived using clouds as diffuse reflectors in order to derive Titan’s surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6–3.2 μm indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850–867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 ± 0.05. Titan’s 4.8 μm spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 μm indicate that the far wings of the Voigt profile extend 460 cm?1 from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan’s atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 × 12 km2 area surrounding the Huygens landing site. Within the 0.4–1.6 μm spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9–5.0 μm wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede’s icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities.  相似文献   

2.
Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan’s haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5–25 μm) of Titan tholins generated with cold plasma irradiation of a N2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan’s haze material.  相似文献   

3.
Titan’s moment of inertia (MoI), estimated from the quadrupole gravity field measured by the Cassini spacecraft, is 0.342, which has been interpreted as evidence of a partially differentiated internal mass distribution. It is shown here that the observed MoI is equally consistent with a fully differentiated internal structure comprising a shell of water ice overlying a low-density silicate core; depending on the chemistry of Titan’s subsurface ocean, the core radius is between 1980 and 2120 km, and its uncompressed density is 2570–2460 kg m?3, suggestive of a hydrated CI carbonaceous chondrite mineralogy. Both the partially differentiated and fully differentiated hydrated core models constrain the deep interior to be several hundred degrees cooler than previously thought. I propose that Titan has a warm wet core below, or buffered at, the high-pressure dehydration temperature of its hydrous constituents, and that many of the gases evolved by thermochemical and radiogenic processes in the core (such as CH4 and 40Ar, respectively) diffuse into the icy mantle to form clathrate hydrates, which in turn may provide a comparatively impermeable barrier to further diffusion. Hence we should not necessarily expect to see a strong isotopic signature of serpentinization in Titan’s atmosphere.  相似文献   

4.
This study presents an approximate model for the atypical Schumann resonance in Titan’s atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI–PWA) instrumentation during the descent of the Huygens Probe through Titan’s atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan’s ionosphere by the Saturn’s magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan’s atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water–ammonia ocean lying at a likely depth of 55–80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.  相似文献   

5.
Determining the optical constants of Titan aerosol analogues, or tholins, has been a major concern for the last three decades because they are essential to constrain the numerical models used to analyze Titan’s observational data (albedo, radiative transfer, haze vertical profile, surface contribution, etc.). Here we present the optical constant characterization of tholins produced with an RF plasma discharge in a (95%N2–5%CH4) gas mixture simulating Titan’s main atmospheric composition, and deposited as a thin film on an Al–SiO2 substrate. The real and imaginary parts, n and k, of the tholin complex refractive index have been determined from 370 nm to 900 nm wavelength using spectroscopic ellipsometry. The values of n decrease from n = 1.64 (at 370 nm) to n = 1.57 (at 900 nm) as well as the values of k which feature two behaviors: an exponential decay from 370 nm to 500 nm, with k = 12.4 × e?0.018λ (where λ is expressed in nm), followed by a plateau, with k = (1.8 ± 0.2) × 10?3. The trends observed for the PAMPRE tholins optical constants are compared to those determined for other Titan tholins, as well as to the optical constants of Titan’s aerosols retrieved from observational data.  相似文献   

6.
We report a revised crater population for Titan using Cassini RADAR data through January 2010 (flyby T65), and make a size-dependent correction for the incomplete coverage (~33%) using a Monte-Carlo model. Qualitatively, Titan’s landscape is more heavily cratered than Earth, but much less than Mars or Ganymede: the area fraction covered by craters is in fact comparable with that of Venus. Quantitative efforts to interpret crater densities for Titan as surface age have been confounded by widely divergent crater production rates proposed in the literature. We elucidate the specific model assumptions that lead to these differences (assumed projectile density, scaling function for simple crater diameter, and complex crater size exponent) and suggest these are reasonable bounding models, with the Korycansky and Zahnle (2005) model representing a crater retention age of ~1 Ga, and the Artemieva and Lunine (2005) model representing a crater retention age of ~200 Ma. These estimates are consistent with models of Titan’s evolution that predict a thickening of its crust 0.3–1.2 Gyr ago.  相似文献   

7.
Ocean wave growth on Titan is considered. The classic Sverdrup–Munk theory for terrestrial wave growth is applied to Titan, and is compared with a simple energy balance model that exposes the effect of Titan’s environmental parameters (air density, gravity, and fluid density). These approaches are compared with the only previously-published (semi-empirical) model (Ghafoor, N.A.-L., Zarnecki, J.C., Challenor, P., Srokosz, M.A. [2000] J. Geophys. Res. 105, 12,077–12,091, hereafter G2k), and allow the impact of various parameters such as atmospheric density to be transparently explored.Our model, like G2k, suggests fully-developed significant wave heights on Titan Hs = 0.2 U2, where U is the windspeed (SI units): in dimensionless terms this is rather close to Hs = 0.2 U2/g, a rule of thumb previously noted for terrestrial waves (we find various datasets where the prefactor varies by ~2). It is noted that liquid and air densities affect the growth rate of waves, but not their fully-developed height: for 1 m/s winds wave amplitude reaches 0.15 m (75% of fully-developed) with a fetch of only 1 km, rather faster than predicted by G2k. Liquid viscosity has no major effect on gravity wave growth, but does influence the threshold windspeed at which gravity–capillary waves form in the first place.The model is used to develop predicted ranges for wave height to guide the design of the Titan Mare Explorer (TiME), a proposed Discovery-class mission to float a capsule on Ligeia Mare in 2023. For the expected maximum 1 m/s winds, a significant wave height of 0.2 m and wavelength of ~4 m can be expected. Assuming that wave heights follow Rayleigh statistics as they do on Earth, then given the wave period of ~4 s, individual waves of ~0.6 m might be encountered over a 3 month period.For predicted Titan winds at Kraken Mare, significant wave heights may reach ~0.6 m in the peak of summer but do not exceed the tidal amplitude at its northern end, consistent with the area around Mayda Insula being a tidal flat, while elsewhere on Kraken and Ligeia and at Ontario Lacus, shorelines may be wave- or tidally-dominated, depending on the specific location.  相似文献   

8.
We use two independent General Circulation Models (GCMs) to estimate surface winds at Titan’s Ligeia Mare (78° N, 250° W), motivated by a proposed mission to land a floating capsule in this ~500 km hydrocarbon sea. The models agree on the overall magnitude (~0.5–1 m/s) and seasonal variation (strongest in summer) of windspeeds, but details of seasonal and diurnal variation of windspeed and direction differ somewhat, with the role of surface exchanges being more significant than that of gravitational tides in the atmosphere. We also investigate the tidal dynamics in the sea using a numerical ocean dynamics model: assuming a rigid lithosphere, the tidal amplitude is up to ~0.8 m. Tidal currents are overall proportional to the reciprocal of depth—with an assumed central depth of 300 m, the characteristic tidal currents are ~1 cm/s, with notable motions being a slosh between Ligeia’s eastern and western lobes, and a clockwise flow pattern.We find that a capsule will drift at approximately one tenth of the windspeed, unless measures are adopted to augment the drag areas above or below the waterline. Thus motion of a floating capsule is dominated by the wind, and is likely to be several km per Earth day, a rate that will be readily measured from Earth by radio navigation methods. In some instances, the wind vector rotates diurnally such that the drift trajectory is epicyclic.  相似文献   

9.
The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m?2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m?2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ~0.05 kg m?2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (~10?3 W m?2). If the amount of atmospheric ethane is less than 0.6×10?5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m?2, then the liquid lifetime increases to ~56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10?5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10?5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.  相似文献   

10.
Recent papers suggest the significant variability of conditions in Saturn’s magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ~1800 km (1.7 Rt) altitude by the average external field due to Saturn’s dipole moment. In this study, we analyze Cassini’s plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ~1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ~1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan’s ionosphere) complicate what is observed.  相似文献   

11.
This work deals with the optical constant characterization of Titan aerosol analogues or “tholins” produced with the PAMPRE experimental setup and deposited as thin films onto a silicon substrate. Tholins were produced in different N2–CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real (n) and imaginary (k) parts of the complex refractive index were determined using the spectroscopic ellipsometry technique in the 370–1000 nm wavelength range. We found that optical constants depend strongly on the methane concentrations of the gas phase in which tholins are produced: imaginary optical index (k) decreases with initial CH4 concentration from 2.3 × 10?2 down to 2.7 × 10?3 at 1000 nm wavelength, while the real optical index (n) increases from 1.48 up to 1.58 at 1000 nm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of the secondary and primary amines signature in the mid-IR absorption. Comparison with results of other tholins and data from Titan observations are presented. We found an agreement between our values obtained with 10% methane concentration, and Imanaka et al. (Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N. [2004]. Icarus, 168, 344–366) values, in spite of the difference in the analytical method. This confirms a reliability of the optical properties of tholins prepared with various setups but with similar plasma conditions. Our comparison with Titan’s observations also raises a possible inconsistency between the mid-IR aerosol signature by VIMS and CIRS Cassini instruments and the visible Huygens-DISR derived data. The mid-IR VIMS and CIRS signatures are in agreement with an aerosol dominated by an aliphatic carbon content, whereas the important visible absorption derived from the DISR measurement seems to be incompatible with such an important aliphatic content, but more compatible with an amine-rich aerosol.  相似文献   

12.
We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15°S (from far-IR) and 20°S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 μm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan’s aerosol between 70 and 1500 cm?1 (143 and 6.7 μm). As the real and imaginary parts of the refractive index are related by the Kramers–Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan’s aerosol analogues (tholins) produced in laboratory experiments. We find that Titan’s aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to CH bending vibrations in methyl and methylene groups. It appears that Titan’s aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56°S, 5°N and 30°N) and in the 193–274 km altitude range, which implies that Titan’s aerosols exhibit the same chemical composition in all investigated latitude and altitude regions.  相似文献   

13.
We determined Titan's reflectivity spectrum near the Huygens' landing site from observations taken with the Descent Imager/Spectral Radiometer below 500 m altitude, in particular the downward-looking photometer and spectrometers. We distinguish signal coming from illumination by sunlight and the lamp onboard Huygens based on their different spectral signatures. For the sunlight data before landing, we find that spatial variations of Titan's reflectivity were only ~0.8%, aside from the phase angle dependence, indicating that the probed area within ~100 m of the landing site was very homogeneous. Only the very last spectrum taken before landing gave a 3% brighter reflectivity, which probably was caused by one bright cobble inside its footprint. The contrast of the cobble was higher at 900 nm wavelength than at 600 nm.For the data from lamp illumination, we confirm that the phase function of Titan's surface displays a strong opposition effect as found by Schröder and Keller (2009. Planetary and Space Science 57, 1963–1974). We extend the phase function to even smaller phase angles (0.02°), which are among the smallest phase angles observed in the solar system. We also confirm the reflectivity spectrum of the dark terrain near the Huygens' landing site between 900 and 1600 nm wavelength by Schröder and Keller (2008. Planetary and Space Science 56, 753–769), but extend the spectrum down to 435 nm wavelength. The reflectivity at zero phase angle peaks at 0.45±0.06 around 750 nm wavelength and drops down to roughly 0.2 at both spectral ends. Our reflectivity of 0.45 is much higher than all previously reported values because our observations probe lower phase angles than others. The spectrum is very smooth except for a known absorption feature longward of 1350 nm. We did not detect any significant variation of the spectral shape along the slit for exposures after landing, probing a 25×4 cm2 area. However, the recorded spectral shape was slightly different for exposures before and after landing. This difference is similar to the spectral differences seen on scales of kilometers (Keller et al., 2008. Planetary and Space Science 56, 728–752), indicating that most observations may probe spatially variable contributions from two basic materials, such as a dark soil partially covered by bright cobbles.We used the methane absorption features to constrain the methane mixing ratio near the surface to 5.0±0.3%, in agreement with the 4.92±0.24% value measured in situ by Niemann et al. (2005. Nature 438, 779–784), but smaller than their revised value of 5.65±0.18% (Niemann et al., 2010. Journal of Geophysical Research 115, E12006). Our results were made possible by an in depth review of the calibration of the spectroscopic and photometric data.  相似文献   

14.
《Planetary and Space Science》2007,55(13):1936-1948
The Huygens probe underwent vigorous short-period motions during its parachute descent through the atmosphere of Saturn's moon Titan in January 2005, at least some of which were excited by the Titan environment. Several sensors in the Huygens Surface Science Package (SSP) detect these motions, indicating the transition to the smaller stabilizer parachute, the changing probe spin rate, aerodynamic buffeting, and pendulum motions. Notably, in an altitude range of about 20–30 km where methane drops will freeze, the frequency content and statistical kurtosis of the tilt data indicate excitation by turbulent air motions like those observed in freezing clouds on Earth, supporting the suggestion of Tokano et al. [Tokano, T., McKay, C.P., Neubauer, F.M., Atreya, S.K., Ferri, F., Fulchignoni, M., Niemann, H.B. (2006a). Methane drizzle on Titan. Nature 442, 432–435] that the probe passed through such a cloud layer. Motions are weak below 20 km, suggesting a quiescent lower atmosphere with turbulent fluctuations of nominally <0.15 m/s (to within a factor of ∼2) but more violent motions in the upper troposphere may have been excited by turbulent winds with amplitudes of 1–2 m/s. Descent in part of the stratosphere (150–120 km) was smooth despite strong ambient wind (∼100 m/s), but known anomalies in the probe spin prevent investigation of turbulence in the known wind-shear layer from 60 to 100 km.  相似文献   

15.
Dune fields dominate ~13% of Titan’s surface and represent an important sink of carbon in the methane cycle. Herein, we discuss correlations in dune morphometry with altitude and latitude. These correlations, which have important implications in terms of geological processes and climate on Titan, are investigated through the microwave electromagnetic signatures of dune fields using Cassini radar and radiometry observations. The backscatter and emissivity from Titan’s dune terrains are primarily controlled by the amount of interdune area within the radar footprint and are also expected to vary with the degree of the interdunal sand cover. Using SAR-derived topography, we find that Titan’s main dune fields (Shangri-La, Fensal, Belet and Aztlan) tend to occupy the lowest elevation areas in Equatorial regions occurring at mean elevations between ~?400 and ~0 m (relative to the geoid). In elevated dune terrains, we show a definite trend towards a smaller dune to interdune ratio and possibly a thinner sand cover in the interdune areas. A similar correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. The altitudinal trend among Titan’s sand seas is consistent with the idea that sediment source zones most probably occur in lowlands, which would reduce the sand supply toward elevated regions. The latitudinal preference could result from a gradual increase in dampness with latitude due to the asymmetric seasonal forcing associated with Titan’s current orbital configuration unless it is indicative of a latitudinal preference in the sand source distribution or wind transport capacity.  相似文献   

16.
The European Space Agency’s Rosetta spacecraft is the first Solar System mission to include instrumentation capable of measuring planetary thermal fluxes at both near-IR (VIRTIS) and submillimeter–millimeter (smm–mm, MIRO) wavelengths. Its primary mission is a 1 year reconnaissance of Comet 67P/Churyumov–Gerasimenko beginning in 2014. During a 2010 close fly-by of Asteroid 21 Lutetia, the VIRTIS and MIRO instruments provided complementary data that have been analyzed to produce a consistent model of Lutetia’s surface layer thermal and electrical properties, including a physical model of self-heating. VIRTIS dayside measurements provided highly resolved 1 K accuracy surface temperatures that required a low thermal inertia, I < 30 J/(K m2 s0.5). MIRO smm and mm measurements of polar night thermal fluxes produced constraints on Lutetia’s subsurface thermal properties to depths comparable to the seasonal thermal wave, yielding a model of I < 20 J/(K m2 s0.5) in the upper few centimeters, increasing with depth in a manner very similar to that of Earth’s Moon. Subsequent MIRO-based model predictions of the dayside surface temperatures reveal negative offsets of ~5–30 K from the higher VIRTIS-measurements. By adding surface roughness in the form of 50% fractional coverage of hemispherical mini-craters to the MIRO-based thermal model, sufficient self-heating is produced to largely remove the offsets relative to the VIRTIS measurements and also reproduce the thermal limb brightening features (relative to a smooth surface model) seen by VIRTIS. The Lutetia physical property constraints provided by the VIRTIS and MIRO data sets demonstrate the unique diagnostic capabilities of combined infrared and submillimeter/millimeter thermal flux measurements.  相似文献   

17.
Chemical analyses of soil samples performed at different landing sites on Mars suggest the presence of sulfate minerals. These minerals are also thought to be present in the globally mixed Martian bright soils covering large areas of the planet. However, remote soil spectra have so far provided only tentative identification of sulfates regarding mineral types and abundances. This paper concentrates on the detectability of four Ca- and Mg-sulfates (anhydrite, gypsum, kieserite, hexahydrite) in the 4–5 μm range of Martian remote soil spectra. This spectral range is important for sulfate detection as most fine-grained sulfates exhibit significant absorption bands between 4 and 5 μm, independent of the texture of the host soils (e.g., loose powdered or cemented soils). Furthermore, this is the spectral range for which the Planetary Fourier Spectrometer (PFS) and Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) instruments onboard ESA/Mars Express mission provide high spectral and spatial resolution data. Laboratory near- and mid-IR reflectance spectra of the pure sulfates and their mixtures with a terrestrial Martian soil analog were acquired. The results show that even the smallest amount of admixed sulfate (∼5 wt%) generates significant absorption features in the portion of the 4–5 μm range not covered by the saturated Martian atmospheric CO2 absorption band between 4.2 and 4.4 μm. Model calculations of the influence of emitted surface radiation on the detectability of sulfate features show that the depth of the features decreases strongly with increasing surface temperature of an observed area resulting in the fact that all sulfates are spectrally hidden at surface temperatures around 270 K even at ∼14 or ∼25 wt% sulfate content in the soils. Sulfates become increasingly detectable depending on the sulfate content if the surface temperature is below 260 K. The outcome of this work helps to constrain the conditions needed for remote detection of sulfates within Martian bright soils in the 4–5 μm range.  相似文献   

18.
We have developed a new 3-dimensional climate model for Titan’s atmosphere, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model dynamical core. Microphysics and photochemistry are still computed as zonal averages. This GCM covers altitudes from surface to 500 km altitude, with barotropic waves now being resolved and the diurnal cycle included. The boundary layer scheme has been changed, yielding a strong improvement in the tropospheric zonal wind profile modeled at Huygens descent position and season. The potential temperature profile is fairly consistent with Huygens observations in the lowest 10 km. The latitudinal profile of the near-surface temperature is close to observed values. The minimum of zonal wind observed by the Huygens probe just above the tropopause is also present in these simulations, and its origin is discussed by comparing solar heating and dynamical transport of energy. The stratospheric temperature and wind fields are consistent with our previous works. Compared to observations, the zonal wind peak is too weak (around 120 m/s) and too low (around 200 km). The temperature structures appear to be compressed in altitude, and depart strongly from observations in the upper stratosphere. These discrepancies are correlated, and most probably related to the altitude of the haze production. The model produces a detached haze layer located more than 150 km lower than observed by the Cassini instruments. This low production altitude is due to the current position of the GCM upper boundary. However, the temporal behaviour of the detached haze layer in the model may explain the seasonal differences observed between Cassini and Voyager 1. The waves present in the GCM are analyzed, together with their respective roles in the angular momentum budget. Though the role of the mean meridional circulation in momentum transport is similar to previous work, and the transport by barotropic waves is clearly seen in the stratosphere, a significant part of the transport at high latitudes is done all year long through low-frequency tropospheric waves that may be baroclinic waves.  相似文献   

19.
《Planetary and Space Science》2007,55(13):1877-1885
Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of the National Aeronautics and Space Administration, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft—a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency—Cassini/Huygens was launched in October 1997. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided in situ measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. To correctly interpret and correlate results from the probe science experiments, and to provide a reference set of data for ground-truth calibration of orbiter remote sensing measurements, an accurate reconstruction of the probe entry and descent trajectory and surface landing location is necessary. The Huygens Descent Trajectory Working Group was chartered in 1996 as a subgroup of the Huygens Science Working Team to develop and implement an organizational framework and retrieval methodologies for the probe descent trajectory reconstruction from the entry altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe. This paper presents an overview of the Descent Trajectory Working Group, including the history, rationale, goals and objectives, organizational framework, rules and procedures, and implementation.  相似文献   

20.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号