首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Fornasier  B.E. Clark 《Icarus》2011,214(1):131-146
We present reflected light spectral observations from 0.4 to 2.5 μm of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths.The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. Sixteen asteroids were observed in the visible and near-infrared wavelength range, seven objects in the visible wavelength range only, and one object in the near-infrared wavelength range only. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. We describe 1 A-type (1122), 1 D-type (1328), 1 E-type (possibly, 3447 Burckhalter), 10 M-types (77, 92, 184, 337, 417, 741, 758, 1124, 1146 and 1355), 5 P-types (275, 463, 522, 909, 1902), and 6 C-types (50, 220, 223, 283, 517, and 536). In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that seven of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Our method of searching for meteorite analogues emphasizes the spectral characteristics of brightness and shape, and de-emphasizes minor absorption bands. Indeed, faint absorption features like the 0.9 μm band seen on four newly classified M-type asteroids are not reproduced by the iron meteorites. In these cases, we have searched for geographical mixture models that can fit the asteroid spectrum, minor bands, and albedo. We find that a few percent (less than 3%) of orthopyroxene added to iron or pallasite meteorite, results in good spectral matches, reproducing the weak spectral feature around 0.9 μm seen on 92 Undina, 417 Suevia, and 1124 Stroobantia. For 337 Devosa, a mixture model that better reproduces its spectral behavior and the 0.9 μm feature is made with Esquel pallasite enriched with goethite (2%).Finally, we consider the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies. This sample includes M and E-type asteroid data presented in [Fornasier et al., 2008] and [Fornasier et al., 2010]. We find that the mean visible spectral slopes for the different E, M and P Tholen classes are very similar, as expected. An analysis of the X-type asteroid distribution in the main belt is also reported, following both the Tholen and the Bus-DeMeo taxonomies (DeMeo et al., 2009).  相似文献   

2.
Abstract– Diagnostic mineral absorption features for pyroxene(s), olivine, phyllosilicates, and hydroxides have been detected in the near‐infrared (NIR: approximately 0.75–2.50 μm) spectra for 60% of the Tholen‐classified ( Tholen 1984, 1989 ) M‐/X‐asteroids observed in this study. Nineteen asteroids (42%) exhibit weak Band I (approximately 0.9 μm) ± Band II (approximately 1.9 μm) absorptions, three asteroids (7%) exhibit a weak Band I (approximately 1.05–1.08 μm) olivine absorption, four asteroids (9%) display multiple absorptions suggesting phyllosilicate ± oxide/hydroxide minerals, one (1) asteroid exhibits an S‐asteroid type NIR spectrum, and 18 asteroids (40%) are spectrally featureless in the NIR, but have widely varying slopes. Tholen M‐asteroids are defined as asteroids exhibiting featureless visible‐wavelength (λ) spectra with moderate albedos ( Tholen 1989 ). Tholen X‐asteroids are also defined using the same spectral criterion, but without albedo information. Previous work has suggested spectral and mineralogical diversity in the M‐asteroid population ( Rivkin et al. 1995, 2000 ; Busarev 2002 ; Clark et al. 2004 ; Hardersen et al. 2005 ; Birlan et al. 2007 ; Ockert‐Bell et al. 2008, 2010 ; Shepard et al. 2008, 2010 ; Fornasier et al. 2010 ). The pyroxene‐bearing asteroids are dominated by orthopyroxene with several likely to include higher‐Ca clinopyroxene components. Potential meteorite analogs include mesosiderites, CB/CH chondrites, and silicate‐bearing NiFe meteorites. The Eos family, olivine‐bearing asteroids are most consistent with a CO chondrite analog. The aqueously altered asteroids display multiple, weak absorptions (0.85, 0.92, 0.97, 1.10, 1.40, and 2.30–2.50 μm) indicative of phyllosilicate ± hydroxide minerals. The spectrally featureless asteroids range from metal‐rich to metal‐poor with meteorite analogs including NiFe meteorites, enstatite chondrites, and stony‐iron meteorites.  相似文献   

3.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near‐infrared (0.3–2.2 μm) and in the midinfrared to thermal infrared (2.5–30.0 μm or 4000 to ~333 cm−1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal‐rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high‐albedo asteroids.  相似文献   

4.
Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. The mean radar albedo for all our targets is , significantly higher than the mean radar albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of these objects (Asteroids 16 Psyche, 129 Antigone, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, 785 Zwetana) have radar albedos indicative of a very high metal content , and consistent with a remnant iron/nickel core interpretation (irons) or exotic high metal meteorite types such as CB. We propose designating these high radar albedo objects as Mm. Two asteroids, 110 Lydia and 678 Fredegundis, have more moderate radar albedos , but exhibit high values at some rotation phases suggesting a significant metal content. The remaining 10 objects have moderate radar albedos at all rotation phases. Most of our targets have visible/near-infrared spectra (Hardersen, P.S., Gaffey, M.J., Abell, P.A. [2005]. Icarus 175, 141-158; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2009]. Icarus, submitted for publication) that indicate the presence of at least some silicate phases. All of the non-Mm asteroids show a positive correlation between visual and radar albedo but the reasons for this are not clear. All of the higher radar albedo targets (the 7 Mm asteroids, Lydia, and Fredegundis) show moderate to large variations in radar albedo with rotation phase. We suggest that their high radar reflectivity exaggerates irregularities in the asteroid shape to cause this behavior. One-third of our targets show evidence for asteroid-scale concavities or bifurcation. Based on all the evidence available, we suggest that most Tholen M-class asteroids are not remnant iron cores or enstatite chondrites, but rather collisional composites of silicates and irons with compositions more analogous to stony-iron meteorites and high-iron carbonaceous chondrites.  相似文献   

5.
This is the first focused study of non-Eos K asteroids. We have observed a total of 30 K-complex objects (12 K-2 Sk- and 13 Xk-type asteroids (from the Bus taxonomy), plus 3 K-candidates from previous work) and we present an analysis of their spectral properties from 0.4 to 2.5 μm. We targeted these asteroids because their previous observations are spectrally similar enough to suggest a possible compositional relationship. All objects have exhibited spectral redness in the visible wavelengths and minor absorptions near 1 micron. If, as suggested, K-complex asteroids (including K, Xk, and Sk) are the parent bodies of carbonaceous meteorites, knowledge of K-asteroid properties and distribution is essential to our understanding of the cosmochemical importance of some of the most primitive meteorite materials in our collection. This paper presents initial results of our analysis of telescopic data, with supporting analysis of laboratory measurements of meteorite analogs. Our results indicate that K-complex asteroids are distinct from other main belt asteroid types (S, B, C, F, and G). They do not appear to be a subset of these other types. K asteroids nearly span the range of band center positions and geometric albedos exhibited by the carbonaceous chondrites (CO, CM, CV, CH, CK, CR, and CI). We find that B-, C-, F- and G-type asteroids tend to be darker than meteorites, and can have band centers longer than any of the chondrites measured here. This could indicate that K-complex asteroids are better spectral analogues for the majority of our carbonaceous meteorites than the traditional B-, C-, F- and G-matches suggested in the literature. This paper present first results of our ongoing survey to determine K-type mineralogy, meteorite linkages, and significance to the geology of the asteroid regions.  相似文献   

6.
We present a method to constrain the albedo and diameters of near-Earth asteroids (NEAs) based on thermal flux in their near-infrared spectra (0.7–2.5 μm) using the Standard Thermal Model. Near-infrared spectra obtained with the SpeX instrument on NASA Infrared Telescope Facility are used to estimate the albedo and diameters of 12 NEAs (1992 JE, 1992 UY4, 1999 JD6, 2004 XP14, 2005 YY93, 2007 DS84, 2005 AD13, 2005 WJ56, 1999 JM8, 2005 RC34, 2003 YE45, and 2008 QS11). Albedo estimates were compared with average albedo for various taxonomic classes outlined by Thomas et al. (Thomas, C.A. et al. [2011]. Astron. J. 142(3)) and are consistent with their results. Spectral band parameters, like band centers, are derived and compared to spectra of laboratory mineral mixtures and meteorites to constrain their composition and possible meteorite analogs. Based on our study we estimate the albedos and diameters of these NEAs and compare them with those obtained by other techniques such as ground-based mid-infrared, Spitzer thermal infrared and Arecibo radar. Our results are broadly consistent with the results from other direct methods like radar. Determining the compositions of low albedo asteroids is a challenge due to the lack of deep silicate absorption features. However, based on weak absorption features and albedo, we suggest possible meteorite analogs for these NEAs, which include black chondrites, CM2 carbonaceous chondrites and enstatite achondrites. We did not find any specific trends in albedo and composition among the asteroids we observed.  相似文献   

7.
J.M. Carvano  T. Mothé-Diniz 《Icarus》2003,161(2):356-382
We present an analysis of 460 featureless asteroid spectra in the range 0.5-0.92 μm obtained in the Small Solar System Objects Spectroscopic Survey. The spectra are described in terms of the continuum steepness (cSlope), its concavity (RRE), and the blue wing of drop in the UV reflectance (BD). Comparison with meteorite spectra confirms the link between CM meteorites and asteroids with asteroids with 0.7 μm band. Also, it is found that asteroids with extreme negative slope values may be related to CK chondrites and that asteroids with pronounced concave-down curvature are related to CO chondrites. An analysis of the distribution of the spectral parameters with semimajor axis, diameter, and albedo is performed.  相似文献   

8.
Enstatite chondrites and aubrites are meteorites that show the closest similarities to the Earth in many isotope systems that undergo mass‐independent and mass‐dependent isotopic fractionations. Due to the analytical challenges to obtain high‐precision K isotopic compositions in the past, potential differences in K isotopic compositions between enstatite meteorites and the Earth remained uncertain. We report the first high‐precision K isotopic compositions of eight enstatite chondrites and four aubrites and find that there is a significant variation of K isotopic compositions among enstatite meteorites (from ?2.34‰ to ?0.18‰). However, K isotopic compositions of nearly all enstatite meteorites scatter around the bulk silicate earth (BSE) value. The average K isotopic composition of the eight enstatite chondrites (?0.47 ± 0.57‰) is indistinguishable from the BSE value (?0.48 ± 0.03‰), thus further corroborating the isotopic similarity between Earth's building blocks and enstatite meteorite precursors. We found no correlation of K isotopic compositions with the chemical groups, petrological types, shock degrees, and terrestrial weathering conditions; however, the variation of K isotopes among enstatite meteorite can be attributed to the parent‐body processing. Our sample of the main‐group aubrite MIL 13004 is exceptional and has an extremely light K isotopic composition (δ41K = ?2.34 ± 0.12‰). We attribute this unique K isotopic feature to the presence of abundant djerfisherite inclusions in our sample because this K‐bearing sulfide mineral is predicted to be enriched in 39K during equilibrium exchange with silicates.  相似文献   

9.
Abstract— We review the meteoritical and astronomical literature to answer the question: What is the evidence for the importance of ordinary chondritic material to the composition of the asteroid belt? From the meteoritical literature, we find that currently (1) our meteorite collections sample at least 135 different asteroids; (2) out of 25+ chondritic meteorite parent bodies, 3 are (by definition) ordinary chondritic; (3) out of 14 chondritic grouplets and unique chondrites, 11 are affiliated with a carbonaceous group/clan of chondrites; (4) out of 24 differentiated groups of meteorites, only the HE iron meteorites clearly formed from ordinary chondritic precursor material; (5) out of 12 differentiated grouplets and unique differentiated meteorites, 8 seem to have had carbonaceous chondritic precursors; (6) a high frequency of carbonaceous clasts in ordinary chondritic breccias suggests that ordinary chondrites have been embedded in a swarm of carbonaceous material. The rare occurrence (only one example) of ordinary chondritic clasts in carbonaceous chondritic breccias indicates that ordinary chondritic material has not been widespread in the asteroid belt; (7) cosmic spherules, micrometeorites, and stratospheric interplanetary dust particles—believed to represent a less biased sampling of asteroidal material—show that only a very small fraction (less than ~1%) of asteroidal dust has an ordinary chondritic composition. From the astronomical literature, we find that currently (8) spectroscopic surveys of the main asteroid belt are finding more and more nonordinary chondritic primitive material in the inner main belt; (9) the increase in spectroscopic data has increased the inferred mineralogical diversity of main belt asteroids; and (10) no ordinary chondritic asteroids have been directly observed in the main belt. These lines of evidence strongly suggest a scenario in which ordinary chondritic asteroids were never abundant in the main belt. The S-type asteroids may currently be primarily differentiated, but the precursor material is more likely to have been carbonaceous chondritic, not ordinary chondritic. Historically, carbonaceous material could have dominated the entire main belt. This could explain the presence in the inner main belt of asteroids linked to the primitive carbonaceous chondrites, and the absence of asteroids linked to the ordinary chondrites. The implications of this scenario for the asteroid heating mechanism(s) are briefly discussed.  相似文献   

10.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

11.
Scott A. Sandford 《Icarus》1984,60(1):115-126
Infrared transmission spectra from 53 meteorites in the spectral range from 2.5 to 25 μm were measured to permit comparisons with data of astronomical objects that are potential meteorite sources. Data were taken for 14 carbonaceous chondrites, 5 LL ordinary chondrites, 6 L ordinary chondrites, 10 H ordinary chondrites, 1 enstatite chondrite, 4 aubrites, 3 eucrites, 4 howardites, 1 diogenite, 1 mesosiderite, 2 nakhlites, 1 shergottite, and the anomalous achondrite Angra dos Reis. The CO and CV carbonaceous chondrites have spectra similar to each other, with 10-μm features characteristic of olivine. The CM carbonaceous chondrites have distinctive 10-μm features that are attributed to layer lattice silicates. Members of both the CI and CR classes have spectra distinct from those of other carbonaceous chondrites. The LL, L, and H ordinary chondrites have spectra that match those of olivine and pyroxene mixtures. The enstatite chondrites and enstatite achondrites (aubrites) all exhibit spectra diagnostic of the pyroxene enstatite. The angrite, howardites, aucrites, nakhlites, shergottite, and diogenite all have similar spectra also dominated by pyroxene. The single mesosiderite examined had a spectrum distinct from all the other meteorites.  相似文献   

12.
We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo—an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies.  相似文献   

13.
Spectra of Asteroid 9969 Braille in the 1.25-2.6 μm region returned by the Deep Space 1 (DS1) Mission show a ∼10% absorption band centered at 2 μm, and a reflectance peak at 1.6 μm. Analysis of these features suggest that the composition of Braille is roughly equal parts pyroxene and olivine. Its spectrum between 0.4 and 2.5 μm suggests that it is most closely related to the Q taxonomic type of asteroid. The spectrum also closely matches that of the ordinary chondrites, the most common type of terrestrial meteorite. The geometric albedo of Braille is unusually high (pv=0.34), which is also consistent with its placement within the rarer classes of stony asteroids, and which suggests it has a relatively fresh, unweathered surface, perhaps due to a recent collision.  相似文献   

14.
Abstract– To understand the nature of C asteroid surfaces, which are often related to phyllosilicates and C chondrites, we report near‐infrared spectra for a suite of phyllosilicates, heated to 100–1100 °C in 100 °C intervals, and compare the results for telescope IRTF spectra for 11 C asteroids. As C asteroids have relatively featureless spectra, we focus on “continuum plots” (1.0–1.75 μm slope against 1.8–2.5 μm slope). We compare the continuum plots of the 11 C asteroids and our heated phyllosilicates with literature data for C chondrites. The CI, CR, CK, and CV chondrite meteorites plot in the C asteroid field, whereas CM chondrites plot in a close but discrete field. All are well separated from the large phyllosilicate field. Heating kaolinite and montmorillonite to ≥700 °C moves their continua slopes into the C asteroid field, whereas chlorite and serpentine slopes move into the CM chondrite field. Water losses during heating are generally 10–15 wt% and were associated with a 20–70% albedo drop. Our data are consistent with surfaces of the C asteroids consisting of the dehydration products of montmorillonite whereas the CM chondrites are the dehydration products of serpentine and chlorite. The presence of opaque minerals and evaporites does not provide quantitative explanations for the difference in continua slopes of the phyllosilicates and C asteroids. The CM chondrites can also be linked to the C asteroids by heating. We suggest that the CM chondrites are interior samples, and the presence of a 3 μm feature in C asteroid spectra also indicates the excavation of material.  相似文献   

15.
In order to gain further insight into their surface compositions and relationships with meteorites, we have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV slope, a 0.7 μm feature and a 3 μm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be characterized by the slopes of their continua. We thus plot the slope of the continuum between 1.8 and 2.5 μm against slope between 1.0 and 1.75 μm, the break at ∼1.8 μm chosen since phyllosilicates show numerous water-related features beyond this wavelength. On such plots, the C complex fields match those of phyllosilicates kaolinite and montmorillonite that have been heated to about 700 °C, while the X complex fields match the fields for phyllosilicates montmorillonite and serpentine that have been similarly heated. We thus suggest that the surface of the C complex asteroids consist of decomposition products of kaolinite or montmorillonite while for the X complex we suggest that surfaces consist of decomposition products of montmorillonite or serpentine. On the basis of overlapping in fields on the continuum plots we suggest that the CI chondrites are linked with the Cgh asteroids, individual CV and CR chondrites are linked with Xc asteroids, a CK chondrite is linked with the Ch or Cgh asteroids, a number of unusual CI/CM meteorites are linked with C asteroids, and the CM chondrites are linked with the Xk asteroids. The associations are in reasonable agreement with chondrite mineralogy and albedo data.  相似文献   

16.
We present near-infrared spectra of 23 B-type asteroids obtained with the NICS camera-spectrograph at the 3.56 m Telescopio Nazionale Galileo. We also compile additional visible and near-infrared spectra of another 22 B-type asteroids from the literature. A total of 45 B-types are analyzed. No significant trends in orbital properties of our sample were detected when compared with all known B-types and all known asteroids. The reflectance spectra of the asteroids in the 0.8–2.5 μm range show a continuous shape variation, from a monotonic negative (blue) slope to a positive (red) slope. This continuous spectral trend is filling the gap between the two main groups of B-types published by Clark et al. ([2010]. J. Geophys. Res., 115, 6005–6027). We found no clear correlations between the spectral slope and the asteroids’ sizes or heliocentric distances. We apply a clustering technique to reduce the volume of data to six optimized “average spectra” or “centroids”, representative of the whole sample. These centroids are then compared against meteorite spectra from the RELAB database. We found carbonaceous chondrites as the best meteorite analogs for the six centroids. There is a progressive change in analogs that correlates with the spectral slope: from CM2 chondrites (water-rich, aqueously altered) for the reddest centroid, to CK4 chondrites (dry, heated/thermally altered) for the bluest one.  相似文献   

17.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

18.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   

19.
We observed ten M- and X-class main-belt asteroids with the Arecibo Observatory's S-band (12.6 cm) radar. The X-class asteroids were targeted based on their albedos or other properties which suggested they might be M-class. This work brings the total number of main-belt M-class asteroids observed with radar to 14. We find that three of these asteroids have rotation rates significantly different from what was previously reported. Based on their high radar albedo, we find that only four of the fourteen—16 Psyche, 216 Kleopatra, 758 Mancunia, and 785 Zwetana—are almost certainly metallic. 129 Antigone has a moderately high radar albedo and we suggest it may be a CH/CB/Bencubbinite parent body. Three other asteroids, 97 Klotho, 224 Oceana, and 796 Sarita have radar albedos significantly higher than the average main belt asteroid and we cannot rule out a significant metal content for them. Five of our target asteroids, 16 Psyche, 129 Antigone, 135 Hertha, 758 Mancunia, and 785 Zwetana, show variations in their radar albedo with rotation. We can rule out shape and composition in most cases, leaving variations in thickness, porosity, or surface roughness of the regolith to be the most likely causes. With the exception of 129 Antigone, we find no hydrated M-class asteroids (W-class; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T., 2000. Icarus 145, 351-368) to have high radar albedos.  相似文献   

20.
By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号