首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this study, we characterized the glacial meltwater flow through a proglacial area with a focus on proglacial lakes, their hydrological regime and their connection to the stream. The studied lakes – the Adygine ice-debris complex, northern Tien Shan – showed a distinct development throughout an ablation season: at Lake 2, the mean daily water-level fluctuation amplitude increased from 0.07 m to 0.18 m (June, August), then dropped to 0.07 m in September. Glacial meltwater flows through the lakes and further downstream through a rock glacier rather fast, moving at 0.085 m s?1. However, based on the low dye recovery in the stream (0.03%), only a small portion of water was routed efficiently. The complexity of the site’s drainage system was supported by varying isotopic composition of water in the tarns situated on the rock glacier, with Tarn a (δ2H: –36.08‰; δ18O: –6.25‰) being the most enriched and Tarn c (δ2H: 78.68‰; δ18O: 11.9‰) the most depleted in heavy isotopes.  相似文献   

2.
Abstract

Chemical and isotopic data of groundwater of the Upper Cretaceous aquifer in the Orontes basin, Syria, have been used to assess the groundwater geochemistry, the origin of groundwater recharge and groundwater residence time. The chemical data indicate that dissolution of evaporite minerals is the main process controlling groundwater mineralization. The composition of stable isotopes δ18O and δ2H, together with 14C activity, reflect the existence of three different groups: (a) groundwater in the Coastal Mountains with δ18O of –6.65‰, quite similar to modern-day precipitation, and high 14C (>50 pmC); (b) groundwater in the unconfined aquifer of the Hama Uplift, which has δ18O of –5.52‰ and 14C near 20 pmC, and is recharged locally; and (c) groundwater from the confined aquifer of the Homs Depression, which is characterized by more depleted δ18O,, –8.01‰, and low 14C (<7 pmC), and might be recharged in the northern piedmont of the Anti-Lebanon Mountains. The distinctive isotope signatures of the latter two groups indicate different recharge elevations and palaeoclimatic effects. The low recharge rate of the groundwater in the Hama Uplift aquifer, and the even slower recharge rate in the Homs Depression aquifer, are reflected by groundwater 14C residence times of 5 and over 22 Ka BP, respectively.

Editor D. Koutsoyiannis

Citation Al-Charideh, A., 2013. Recharge and mineralization of groundwater of the Upper Cretaceous aquifer in Orontes basin (Syria). Hydrological Sciences Journal, 58 (2), 452–467.  相似文献   

3.
The boron isotopic compositions of common synthetic boron products, municipal wastewaters from Switzerland, and three Swiss freshwater lakes were investigated. The δ11B values (δ11B values are normalized to the standard NIST SRM-951) of synthetic Na-borates (–0.4 to 7.6‰) and Ca-Na-borates (–13.4 to –4.9‰) overlap with those of natural borate minerals and hence suggest that the isotopic signal of anthropogenic boron is not modified during the manufacturing process. As a result it is possible to predict the isotopic composition of synthetic boron products and their potential impact upon contamination of water resources. The δ11B values of municipal wastewaters from two locations in northern Switzerland (–7.7 to –4.5‰) reflect utilization of Na/Ca- and/or Ca-borates depleted in 11B. Freshwater lakes from Switzerland (Lake Zürich, Greifensee, Lake Lugano) yielded a δ11B range of –1.7 to 7.1‰ and boron concentrations of 17 to 102 mg L–1. The boron isotopic ratios decrease with increasing boron concentrations, indicating mixing between anthropogenic boron with a low δ11B signature and meteoric boron with a heavier isotopic signal. We suggest that the isotopic composition of meteoric boron over central Europe has δ11B values in the range of ca. 10 to 20‰, whereas in coastal areas the marine component is larger with a higher 11B/10B ratio (δ11B ∼ 30‰).  相似文献   

4.
Stable isotope tracers of δ18O and δ2H are increasingly being applied in the study of water cycling in regional-scale watersheds in which human activities, like river regulation, are important influences. In 2015, δ18O and δ2H were integrated into a water quality survey in the Muskoka River Watershed with the aim to provide new regional-scale characterization of isotope hydrology in the 5,100-km2 watershed located on the Canadian Shield in central Ontario, Canada. The forest dominated region includes ~78,000 ha of lakes, 42 water control structures, and 11 generating stations, categorized as “run of river.” Within the watershed, stable isotope tracers have long been integrated into hydrologic process studies of both headwater catchments and lakes. Here, monthly surveys of δ18O and δ2H in river flow were conducted in the watershed between April 2015 and November 2016 (173 surface water samples from 10 river stations). Temporal patterns of stable isotopes in river water reflect seasonal influences of snowmelt and summer-time evaporative fractionation. Spatial patterns, including differences observed during extreme flood levels experienced in the spring of 2016, reflect variation in source contributions to river flow (e.g., snowmelt or groundwater versus evaporatively enriched lake storage), suggesting more local influences (e.g., glacial outwash deposits). Evidence of combined influences of source mixing and evaporative fractionation could, in future, support application of tracer-enabled hydrological modelling, estimation of mean transit times and, as such, contribute to studies of water quality and water resources in the region.  相似文献   

5.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   

6.
Alpine shrub Quercus aquifolioides was selected to study the effects of shrub canopy on throughfall and phreatic water by analyzing the isotopic time series of precipitation, canopy throughfall and phreatic water and examining correlations among these series in Wolong Nature Reserve, Western China. Based on analysis of precipitation data in 2003, the local meteoric water line during the rainy season was δD = 8.28 × δ18O + 8.93, and the primary precipitation moisture in this region originated from the Pacific Ocean in the summer. Stable isotope analysis showed that the main supply of throughfall and phreatic water was from precipitation, and the shrub canopy has an important effect on the processes of rainwater transmuted into throughfall and phreatic water. Moreover, the differences of δD and δ18O values between rainwater and throughfall were relevant to rainfall. Due to interception of the shrub canopy, there had a response hysteresis of phreatic water to the various rainfall events, which was mostly 2 days, except that this hysteresis was ≤1 day when rainfall was >15 mm/day.  相似文献   

7.
Stable isotopes in the water molecule (2H or D and 18O), carbon, and nitrogen are useful tracers and integrators of processes in plant ecohydrological systems across scales. Over the last few years, there has been growing interest in regional to continental scale synthesis of stable isotope data with a view to elucidating biogeochemical and ecohydrological patterns. Published datasets from the humid tropics, however, are limited. To be able to contribute to bridging the “data gap” in the humid tropics, here, we publish a relatively novel and unique suite of δ13C, δ15N, δ2H, and δ18O isotope data from three sites across a moisture gradient and contrasting land use in Puerto Rico. Plant tissue (xylem and leaf) samples from two species of mahogany (Swietenia macrophylla and Swietenia mahagoni) and soil samples down to 60 cm in the soil profile were collected in relatively “wet” (July 2012) and “dry” (February 2013) periods at two sites in northeastern (Luquillo) and southwestern (Susua) Puerto Rico. The same sampling suite is also being made available from a highly urbanized site in the capital San Juan. Leaf samples taken in July 2012 and February 2013 were analyzed for δ13C and δ15N; all xylem and bulk soil samples were analyzed for δ2H and δ18O. Soil samples taken in July 2012 were analyzed for δ13C and δ15N. Leaf δ15N and δ13C dataset showed patterns that are possibly associated with site differences. While spatial patterns were also apparent in soil δ15N and δ13C dataset, the positively linear δ15N –δ13C relationship tends to weaken with site moisture. Soil depth and site moisture patterns were also observed in the δ2H and δ18O datasets of bulk soil and xylem samples. The purpose of these datasets is to provide baseline information on soil–plant water (δ2H and δ18O, N = 319), δ13C (N = 272), and δ15N (N = 269) that may be useful in a wide range of research questions from ecohydrological relations to biogeochemical patterns in soils and vegetation.  相似文献   

8.
ABSTRACT

This study aims to differentiate the potential recharge areas and flow mechanisms in the North-eastern Basin, Palestine. The results differentiate the recharge into three main groups. The first is related to springs and some of the deep wells close to the Anabta Anticline, through the Upper Aquifer (Turonian) formation, with depleted δ18O and δ2H. The second is through the Upper Cenomanian formation surrounding the Rujeib Monocline in the southeast, where the lineament of the Faria Fault plays an important role, with relatively enriched δ13CDIC values of about ?4‰ (VPDB). The third is the Jenin Sub-series, which shows higher δ13CDIC values, with enriched δ18O and δ2H and more saline content. The deep wells from the Nablus area in the south of the basin indicate low δ13CDIC values due to their proximity to freshwater infiltrating faults. The deep wells located to the northwest of the basin have δ13CDIC values from ?8 to ?9‰ (VPDB), with enriched δ18O signatures, indicating slow recharge through thick soil.  相似文献   

9.
This paper reports a detailed geochemical study of thermal occurrences as observed in the edifice and on the flanks of Mendeleev Volcano, Kunashir Island in August and September 2015. We showed that three main types of thermal water are discharged there (neutral chloride sodium, acid chloride sulfate, and acid sulfate types); these waters exhibit a zonality that is typical of volcano-hydrothermal island arc systems. Spontaneous and solfataric gases have relatively low 3He/4He ratios, ranging between 5.4Ra and 5.6Ra, and δ13C-CO2 between –4.8‰ and –3.1‰, and contain a light isotope of carbon in methane (δ13C ≈ –40‰). Gas and isotope geothermometers yield relatively low temperatures around 200°C. The isotope compositions in all types of water are similar to that of local meteoric water. The distribution of microcomponents varies among different types. The isotope composition of dissolved Sr varies considerably, from 0.7034 as observed in Kunashir rocks on an average to 0.7052 in coastal springs, which may have resulted from admixtures of seawater. The total hydrothermal transport rates of magmatic Cl and SO4, as observed for Mendeleev Volcano, are 7.8 t/d and 11.6 t/d, respectively. The natural outward transport of heat by the volcano’s hydrothermal system is estimated as 21 MW.  相似文献   

10.
Abstract

Precipitation and streamwater were analysed weekly for δ18O in seven tributaries and five main stem sites of a 2100 km2 catchment; >60% of it is upland in character. Precipitation δ18O followed seasonal patterns ranging from –20‰ in winter to –4‰ in summer. Seasonality was also evident in stream waters, though much more damped. Mean transit times (MTTs) were estimated using δ18O input–output relationships in a convolution integral with a gamma distribution. The MTTs were relatively similar (528–830 days): tributaries exhibited a greater range, being shorter in catchments with montane topography and hydrologically responsive soils, and longer where catchments have significant water storage. Along the main stem, MTTs increased modestly from 621 to 741 days. This indicates that montane headwaters are the dominant sources of runoff along the main stem of the river system. Models suggest that around 10% of runoff has transit times of less than two weeks during higher flows whilst older (>10-year old) water sustains low flows contributing around 5% of runoff.

Citation Speed, M., Tetzlaff, D., Hrachowitz, M. & Soulsby, C. (2011) Evolution of the spatial and temporal characteristics of the isotope hydrology of a montane river basin. Hydrol. Sci. J. 56(3), 426–442  相似文献   

11.
The local meteoric water line (LMWL), the functional relationship between locally measured values of δ18O and δ2H in precipitation, represents the isotopic composition of water entering hydrologic systems. The degree to which the LMWL departs from the global meteoric water line (GMWL), moreover, can reveal important information about meteoric sources of water (e.g. oceanic or terrestrial) and atmospheric conditions during transport. Here we characterize the isotopic composition of precipitation within an experimental watershed in the Western US that is subject to large topographic and seasonal gradients in precipitation. Interpreting the hydrometeorologic and spatial controls on precipitation, we constructed a seasonally weighted LMWL for southwestern Idaho that is expressed by the equation δ2H = 7.40 × δ18O ? 2.17. A seasonally weighted LMWL that is based on weighting isotopic concentrations by climatic precipitation volumes is novel, and we argue better represents the significant seasonality of precipitation in the region. The developed LMWL is considerably influenced by the semiarid climate experienced in southwest Idaho, yielding a slope and y‐intercept lower than the GMWL (δ2H = 8 × δ18O + 10). Moderate to strong correlations exist between the isotopic composition of precipitation from individual events and surface meteorologic variables, specifically surface air temperature, relative humidity, and precipitation amount. A strong negative correlation exists between the annual average isotopic composition of precipitation and elevation at individual collection sites, with a lapse rate of ?0.22‰/100 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The direct H2Oliquid–H2Ovapour equilibration method utilizing laser spectroscopy (DVE-LS) is a way to measure soil pore water stable isotopes. Various equilibration times and calibration methods have been used in DVE-LS. Yet little is known about their effects on the accuracy of the obtained isotope values. The objective of this study was to evaluate how equilibration time and calibration methods affect the accuracy of DVE-LS. We did both spiking and field soil experiments. For the spiking experiment, we applied DVE-LS to four soils of different textures, each of which was subjected to five water contents and six equilibration times. For the field soil experiment, we applied three calibration methods for DVE-LS to two field soil profiles, and the results were compared with cryogenic vacuum distillation (CVD)-LS. Results showed that DVE-LS demonstrated higher δ2H and δ18O as equilibration time increased, but 12 to 24 hr could be used as optimal equilibration time. For field soil samples, DVE-LS with liquid waters as standards led to significantly higher δ2H and δ18O than CVD-LS, with root mean square error (RMSE) of 8.06‰ for δ2H and 0.98‰ for δ18O. Calibration with soil texture reduced RMSE to 3.53‰ and 0.72‰ for δ2H and δ18O, respectively. Further, calibration with both soil texture and water content decreased RMSE to 3.10‰ for δ2H and 0.73‰ for δ18O. Our findings conclude that the calibration method applied may affect the measured soil water isotope values from DVE-LS.  相似文献   

13.
To investigate the source, flow paths, and chemistry of rich resources of high‐quality, shallow groundwater in the alluvial fan between the Tedori and Sai rivers in central Japan, we analysed stable isotope ratios of H, O, and Sr and concentrations of major dissolved ions and trace elements in groundwater, river water, and paddy water. The 87Sr/86Sr ratios of the groundwater are related to near‐surface geology: groundwater in sediment from the Tedori River has high 87Sr/86Sr ratios (>0.711), whereas that from the Sai River in the north of the fan has low 87Sr/86Sr ratios (<0.711). δ2H and δ18O values and 87Sr/86Sr ratios indicate that groundwater in the central and southern fans is recharged by the Tedori River, whereas recharge in the north is from the Sai River. Mg2+, Ca2+, Sr2+, HCO3?, and SO42? concentrations and δ2H and δ18O values in the groundwater are high in the central fan and, except for the northern area, tend to increase with distance from the Tedori River. There are linear relationships between 87Sr/86Sr ratio and the reciprocal concentrations of Sr2+, Mg2+, and Ca2+. These geochemical characteristics suggest that as groundwater recharged from the Tedori River flows towards the central fan, it mixes with waters derived from precipitation and paddy water that have become enriched in these components during downward infiltration. These results are consistent with our hydrological analysis and numerical simulation of groundwater flow, thus verifying the validity of the model we used in our simulation of groundwater flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Water resources are the most critical factors to ecology and society in arid basins, such as Kaidu River basin. Isotope technique was convenient to trace this process and reveal the influence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and 2H) of surface water and groundwater in Kaidu River. Through the water stable isotope composition measurement, spatial and temporal characteristics of deuterium (δ2H) and oxygen 18 (δ18O) were analysed. It is revealed that (1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi City, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of Kaidu River, the spatial variability of river water showed a ‘heavier‐lighter‐heavier’ change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O and δ2H values of groundwater samples ranged from ?11.36 to ?7.97‰ and ?73.45 to ?60.05‰, respectively. There is an increasing trend of isotopic values along the groundwater flow path. The seasonal fluctuation of δ18O is not clear in most samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A portable Wavelength Scanned‐Cavity Ring‐Down Spectrometer (Picarro L2120) fitted with a diffusion sampler (DS‐CRDS) was used for the first time to continuously measure δ18O and δ2H of stream water. The experiment took place during a storm event in a wet tropical agricultural catchment in north‐eastern Australia. At a temporal resolution of one minute, the DS‐CRDS measured 2160 δ18O and δ2H values continuously over a period of 36 h with a precision of ±0.08 and 0.5‰ for δ18O and δ2H, respectively. Four main advantages in using high temporal resolution stream δ18O and δ2H data during a storm event are highlighted from this study. First, they enabled us to separate components of the hydrograph, which was not possible using high temporal resolution electrical conductivity data that represented changes in solute transfers during the storm event rather than physical hydrological processes. The results from the hydrograph separation confirm fast groundwater contribution to the stream, with the first 5 h of increases in stream discharge comprising over 70% pre‐event water. Second, the high temporal resolution stream δ18O and δ2H data allowed us to detect a short‐lived reversal in stream isotopic values (δ18O increase by 0.4‰ over 9 min), which was observed immediately after the heavy rainfall period. Third, δ18O values were used to calculate a time lag of 20 min between the physical and chemical stream responses during the storm event. Finally, the hydrograph separation highlights the role of event waters in the runoff transfers of herbicides and nutrients from this heavily cultivated catchment to the Great Barrier Reef. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Water Resources - Based on studies conducted in 2017, the features of formation and changes in the isotopic (δ18O and δ2H) and chemical composition of natural waters on the western border...  相似文献   

17.
The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and ?11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.  相似文献   

18.
High‐frequency sampling of stable water isotopes in precipitation and stream water during winter and summer storm events was carried out in a 2·3 km2 lowland agricultural catchment. During peak flows of monitored events, the responses of δ2H and δ18O were comparable and inferred the dominance (ca 70%) of ‘old’ pre‐event water. Transit Time Distribution (TTD) inferred by a gamma function were fitted (Nash–Sutcliffe = 0·8) and were also similar for δ2H and δ18O. However, the shape (α) and scaling (β) parameters were markedly different for summer and winter events. Consequently, when antecedent wetness was high, mean transit times were in the order of days; when drier, they increased to months. Moreover, while the responses of δ2H and δ18O exhibited similar gradual recovery to pre‐event conditions during winter hydrograph recessions, they differed dramatically on summer recessions. Time series analysis showed that δ2H isotope content was correlated with the diurnal cycle of air temperature, suggesting an evaporative fractionation pattern which could be reproduced by a temperature‐based first‐order autoregressive model. The heavier δ18O isotope showed no evidence for such diurnal variability. The study highlights the utility of high‐frequency stable isotope sampling to explore the time‐variant nature of TTDs. Furthermore, it shows that the time of sampling in a diurnal cycle may have crucial significance for interpreting stream isotope signatures, particularly δ2H. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   

20.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号