首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent papers suggest the significant variability of conditions in Saturn’s magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ~1800 km (1.7 Rt) altitude by the average external field due to Saturn’s dipole moment. In this study, we analyze Cassini’s plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ~1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ~1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan’s ionosphere) complicate what is observed.  相似文献   

2.
We discuss the high energy electron absorption signatures at Titan during the Cassini dayside magnetospheric encounters. We use the electron measurements of the Low Energy Measurement System of the Magnetospheric Imaging Instrument. We also examine the mass loading boundary based on the ion data of the Ion Mass Spectrometer sensor of the Cassini Plasma Spectrometer. The dynamic motion of the Kronian magnetopause and the periodic charged particle flux and magnetic field variations – associated with the magnetodisk of Saturn – of the subcorotating magnetospheric plasma creates a unique and complex environment at Titan. Most of the analysed flybys (like T25–T33 and T35–T51) cluster at similar Saturn Local Time positions. However the instantaneous direction of the incoming magnetospheric particles may change significantly from flyby to flyby due to the very different magnetospheric field conditions which are found upstream of Titan within the sets of encounters.The energetic magnetospheric electrons gyrate along the magnetic field lines of Saturn, and at the same time bounce between the mirror points of the magnetosphere. This motion is combined with the drift of the magnetic field lines. When these flux tubes interact with the upper atmosphere of Titan, their content is depleted over approximately an electron bounce period. These depletion signatures are observed as sudden drop-outs of the electron fluxes. We examined the altitude distribution of these drop-outs and concluded that these mostly detected in the exo-ionosphere of Titan and sometimes within the ionosphere.However there is a relatively significant scatter in the orbit to orbit data, which can be attributed to the which can be attributed to the variability of the plasma environment and as a consequence, the induced magnetosphere of Titan. A weak trend between the incoming electron fluxes and the measured drop-out altitudes has also been observed.  相似文献   

3.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

4.
《Planetary and Space Science》1999,47(10-11):1347-1354
Cosmic ray radiation is the main mechanism for ionizing the lower atmosphere of Titan. Their higher penetration power, in comparison with solar photons, allows cosmic rays to penetrate deep into the atmosphere of Titan, ionizing the neutral molecules and generating an ionosphere with an electron density peak, placed at around 90 km, similar in magnitude to the ionospheric peak produced by solar radiation in the upper atmosphere. In the lower atmosphere, the electron density profile, in the absence of a magnetic field, depends mainly on the modulation of cosmic rays by the solar wind and on the nature of the ionizable particles. We present here the first results of a new numerical model developed to calculate the concentration of electrons and most abundant ions in the Titan lower atmosphere. The present knowledge of Titan’s atmosphere permits us to include new neutral and ionic species, such as oxygen derivates, in a more detailed ion-chemistry calculation than previous lower ionospheric models of Titan. The electron density peaks at 90 km with a magnitude of 2150 cm−3. The ion distribution obtained predicts that cluster cations and hydrocarbon cations are the most abundant ions below and above the electron density peak, respectively. We also discuss the effect of solar activity at the distance of the Saturn orbit on the spectrum of the cosmic particles. We obtain that from solar minimum to solar maximum the ionization rate at the energy deposition peak changes by a factor of 1.2 at 70 km, and by a factor of 2.6 at altitudes as high as 400 km. The electron density at the concentration peak changes by a factor of 1.1 at 90 km, and by a factor of 1.6 at 400 km.  相似文献   

5.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

6.
Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the interaction of the Saturnian magnetospheric plasma flow with Titan’s ionosphere. The flux ropes at Venus and Mars were extensively studied from Pioneer Venus Orbiter and Mars Global Surveyor observations respectively during solar maximum. Based on the statistical properties of the observed flux ropes at Venus and Mars, the formation of a flux rope in the ionosphere is thought first to arise near the boundary between the magnetic barrier and the ionosphere and later to sink into the lower ionosphere. Venus flux ropes are also observed during solar minimum by Venus Express and the observations of developing and mature flux ropes are consistent with the proposed mechanism. With the knowledge of flux rope structure in the Venus ionosphere, the twisted fields in the lower ionosphere of Titan from Cassini observations are studied and are found to resemble the Venus flux ropes.  相似文献   

7.
We present estimates of the day-side ionospheric conductivities at Mars based on magnetic field measurements by Mars Global Surveyor (MGS) at altitudes down to ∼100 km during aerobraking orbits early in the mission. At Mars, the so-called ionospheric dynamo region, where plasma/neutral collisions permit electric currents perpendicular to the magnetic field, lies between 100 and 250 km altitude. We find that the ionosphere is highly conductive in this region, as expected, with peak Pedersen and Hall conductivities of 0.1-1.5 S/m depending on the solar illumination and induced magnetospheric conditions. Furthermore, we find a consistent double peak pattern in the altitude profile of the day-side Pedersen conductivity, similar to that on Titan found by Rosenqvist et al. (2009). A high altitude peak, located between 180 and 200 km, is equivalent to the terrestrial peak in the lower F-layer. A second and typically much stronger layer of Pedersen conductivity is observed between 120 and 130 km, which is below the Hall conductivity peak at about 130-140 km. In this altitude region, MGS finds a sharp decrease in induced magnetic field strength at the inner magnetospheric boundary, while the day-side electron density is known to remain high as far down as 100 km. We find that such Titan-like behaviour of the Pedersen conductivity is only observed under regions of strongly draped magnetospheric field-lines, and negligible crustal magnetic anomalies below the spacecraft. Above regions of strong crustal magnetic anomalies, the Pedersen conductivity profile becomes more Earth-like with one strong Pedersen peak above the Hall conductivity peak. Here, both conductivities are 1-2 orders of magnitude smaller than the above only weakly magnetised crustal regions, depending on the strength of the crustal anomaly field at ionospheric altitudes. This nature of the Pedersen conductivity together with the structured distribution of crustal anomalies all over the planet should give rise to strong conductivity gradients around such anomalies. Day-side ionospheric conductivities on Mars (in regions away from the crustal magnetic anomalies) and Titan seem to behave in a very similar manner when horizontally draped magnetic field-lines partially magnetise a sunlit ionosphere. Therefore, it appears that a similar double peak structure of strong Pedersen conductivity could be a more general feature of non-magnetised bodies with ionised upper atmospheres, and thus should be expected to occur also at other non-magnetised terrestrial planets like Venus or other planetary bodies within the host planet magnetospheres.  相似文献   

8.
Saturn's largest moon, Titan, provides an interesting opportunity to study how dense atmospheres interact with the surrounding plasma environment. Without an intrinsic magnetic field, this satellite's nitrogen-rich atmosphere is relatively unprotected from plasma interactions. Therefore, the energy-deposition rate is important for understanding chemistry and dynamics in Titan's atmosphere. Since the plasma environment can vary significantly we focus here on the T18 Titan encounter using in-situ data from instruments on board the Cassini spacecraft. These instruments cannot provide in-situ information below the spacecraft closest approach altitude (∼>960 km) so we use the Cassini magnetospheric imaging instrument (MIMI) ion-neutral camera (INCA) to remotely image energetic hydrogen particle fluxes (20-80 keV) at altitudes below Titan closest approach. We also use the MIMI low-energy magnetosphere measurements system (LEMMS) to measure the incident ion fluxes as the spacecraft approaches Titan and combine these data sets with an atmospheric model to first reproduce INCA images. We then use this model to calculate the energy-deposition profiles for the observed incident proton flux. Our model is able to reproduce the INCA observations and give the energy density deposited vs. altitude in Titan's atmosphere; however, we find that the incident fluxes and energy-deposition profiles vary significantly during the encounter.  相似文献   

9.
During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm−3) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfvén waves.  相似文献   

10.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

11.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

12.
We have developed a new 3-dimensional climate model for Titan’s atmosphere, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model dynamical core. Microphysics and photochemistry are still computed as zonal averages. This GCM covers altitudes from surface to 500 km altitude, with barotropic waves now being resolved and the diurnal cycle included. The boundary layer scheme has been changed, yielding a strong improvement in the tropospheric zonal wind profile modeled at Huygens descent position and season. The potential temperature profile is fairly consistent with Huygens observations in the lowest 10 km. The latitudinal profile of the near-surface temperature is close to observed values. The minimum of zonal wind observed by the Huygens probe just above the tropopause is also present in these simulations, and its origin is discussed by comparing solar heating and dynamical transport of energy. The stratospheric temperature and wind fields are consistent with our previous works. Compared to observations, the zonal wind peak is too weak (around 120 m/s) and too low (around 200 km). The temperature structures appear to be compressed in altitude, and depart strongly from observations in the upper stratosphere. These discrepancies are correlated, and most probably related to the altitude of the haze production. The model produces a detached haze layer located more than 150 km lower than observed by the Cassini instruments. This low production altitude is due to the current position of the GCM upper boundary. However, the temporal behaviour of the detached haze layer in the model may explain the seasonal differences observed between Cassini and Voyager 1. The waves present in the GCM are analyzed, together with their respective roles in the angular momentum budget. Though the role of the mean meridional circulation in momentum transport is similar to previous work, and the transport by barotropic waves is clearly seen in the stratosphere, a significant part of the transport at high latitudes is done all year long through low-frequency tropospheric waves that may be baroclinic waves.  相似文献   

13.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

14.
A two-dimensional model of the ionosphere of Venus which simulates ionospheric dynamics by self-consistently solving the plasma equations of motion, including the inertial term, in finite difference form has been constructed. The model, which is applied over the solar zenith angle range extending from 60 to 140° and the altitude range 100 to 480 km, simulates the measured horizontal velocity field quite satisfactorily. The ion density field is somewhat overestimated on the dayside because of the choice model neutral atmosphere and underestimated on the nightside because of setting the ionopause height at too low an altitude. It is concluded that solar photoionization on the dayside and ion recombination on the nightside are the processes mainly responsible for accelerating the plasma to the observed velocities. The plasma flow appears to be sufficient to maintain the nightside ionosphere at or near the observed median level of ion densities.  相似文献   

15.
《Planetary and Space Science》1999,47(10-11):1341-1346
The present study investigates the role of high altitude monomer particles in the energy balance of Titan’s upper atmosphere above an assumed low and high aggregate formation altitude of 385 km and 535 km. A ‘single particle approach’ was applied, where the starting point is the energy balance of an individual aerosol. In our analysis 0.01–0.06 μm radius aerosol particles were chosen for the proposed monomer formation regions. These particles absorb solar radiation, emit in the infrared, and are energetically linked to the surrounding gas by thermal conduction. To compute the monomer particle heating effect, the aerosols are assumed to radiate directly to space. We found that high altitude monomers may affect the profile of Titan’s thermosphere from 2 to 20 K depending on the formation altitude of fluffy non-spherical aggregates, the monomer size and distribution. The actual Titan temperature profile in this altitude range including all heating effects will be measured by the HASI instrument during the descent of the Huygens probe.  相似文献   

16.
Using a quasi-two-dimensional model of the Venus ionosphere, we calculated the ion number densities and horizontal ion bulk velocities expected for a range of solar zenith angles near the terminator (80 to 100°), and compared them with data obtained from the Pioneer Venus Orbiter retarding potential analyzer. The calculated ion bulk velocity arises entirely from the solar EUV-induced plasma pressure gradient and has a magnitude consistent with observations; ionization by suprathermal electrons is neglected in those computations. We find that while photoionization is the dominant source of ionospheric plasma for solar zenith angles less than 92°, plasma transport from the dayside is the dominant plasma source for solar zenith angles greater than 95°. We also show that the main nightside plasma peak at approximately 140 km altitude is of the F2 type (i.e., is diffusion controlled). Its altitude and shape are thus quite insensitive to the altitude of the ion source.  相似文献   

17.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

18.
Cassini results indicate that solar photons dominate energy deposition in Titan’s upper atmosphere. These dissociate and ionize nitrogen and methane and drive the subsequent complex organic chemistry. The improved constraints on the atmospheric composition from Cassini measurements demand greater precision in the photochemical modeling. Therefore, in order to quantify the role of solar radiation in the primary chemical production, we have performed detailed calculations for the energy deposition of photons and photoelectrons in the atmosphere of Titan and we validate our results with the Cassini measurements for the electron fluxes and the EUV/FUV emissions. We use high-resolution cross sections for the neutral photodissociation of N2, which we present here, and show that they provide a different picture of energy deposition compared to results based on low-resolution cross sections. Furthermore, we introduce a simple model for the energy degradation of photoelectrons based on the local deposition approximation and show that our results are in agreement with detailed calculations including transport, in the altitude region below 1200 km, where the effects of transport are negligible. Our calculated, daytime, electron fluxes are in good agreement with the measured fluxes by the Cassini Plasma Spectrometer (CAPS), and the same holds for the measured FUV emissions by the Ultraviolet Imaging Spectrometer (UVIS). Finally, we present the vertical production profiles of radicals and ions originating from the interaction of photons and electrons with the main components of Titan’s atmosphere, along with the column integrated production rates at different solar zenith angles. These can be used as basis for any further photochemical calculations.  相似文献   

19.
《Planetary and Space Science》1999,47(10-11):1355-1369
Energetic Neutral Atoms (ENAs) are formed when singly charged magnetospheric ions undergo charge exchange collisions with exospheric neutral atoms. The energy of the incident ions is almost entirely transferred to the charge exchange produced ENAs, which then propagate along nearly rectilinear ballistic trajectories. Thus the ENAs can be used like photons in order to form an image of the energetic ion distribution. The Cassini spacecraft is equipped with the Ion and Neutral Camera (INCA), a magnetospheric imaging ENA camera which is part of MIMI (Magnetospheric Imaging Instrument) [Mitchell, D.G., Cheng, A.F., Krimigis, S.M., Keath, E.P., Jaskulek, S.E., Mauk, B.H., McEntire, R.W., Roelof, E.C., Williams, D.J., Hsieh, K.C., Drake, V.A., 1993. INCA: the ion neutral camera for energetic neutral imaging of the Saturnian magnetosphere. Opt. Eng. 32, 3096; Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al., 1998. Magnetospheric Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., submitted]. In this paper we study the production of energetic neutral atoms resulting from the interaction of Titan’s inner exosphere with Saturn’s magnetosphere. We then simulate the ENA images of this interaction, that we anticipate to get from INCA, by using a 3-D model of the ENA production. This first necessitated the development of a model for the altitude density profile and composition of the Titan exosphere [Amsif, A., Dandouras, J., Roelof, E.C., 1997. Modeling the production and the imaging of energetic neutral atoms from Titan’s exosphere. J. Geophys. Res. 102, 22,169]. We thus used the Chamberlain model [Chamberlain, J.W., 1963. Planetary corona and atmospheric evaporation. Planet. Space Sci. 11, 901] and included the five major species: H, H2, N, N2 and CH4. The density and composition profiles obtained were then used to calculate the ENA production, considering a proton spectrum measured by Voyager in the Saturnian magnetosphere as the parent ion population. In order to generate simulated ENA images of the interaction of Titan’s exosphere with Saturn’s magnetosphere, we developed a model based on 3-D trajectory tracing techniques for the parent ions. Since the parent ions (E>10 keV) have gyroradii comparable with the Titan diameter, the screening effect of Titan on the parent ion population was also taken into account. This effect results in highly anisotropic ion distributions, which produce ‘shadows’ in the ENA fluxes, in certain directions. These shadows depend on the ENA energy and on the relative geometry of Titan, the magnetic field and the Cassini spacecraft position. The INCA images will thus enable us to remotely sense the ion fluxes and spectra. They are also expected to give information about the magnetic field in the vicinity of Titan and thus to Titan’s interaction with the magnetosphere of Saturn.  相似文献   

20.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号