首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of ditch blocking on fluvial carbon concentrations and fluxes at a 5‐year, replicated, control‐intervention field experiment on a blanket peatland in North Wales, UK. The site was hydrologically instrumented, and run‐off via open and blocked ditches was analysed for dissolved organic carbon (DOC), particulate organic carbon, dissolved carbon dioxide, and dissolved methane. DOC was also analysed in peat porewater and overland flow. The hillslope experiment was embedded within a paired control‐intervention catchment study, with 3 years of preblocking and 6 years of postblocking data. Results from the hillslope showed large reductions in discharge via blocked ditches, with water partly redirected into hillslope surface and subsurface flows, and partly into remaining open ditches. We observed no impacts of ditch blocking on DOC, particulate organic carbon, dissolved carbon dioxide or methane in ditch waters, DOC in porewaters or overland flow, or stream water DOC at the paired catchment scale. Similar DOC concentrations in ditch water, overland flow, and porewater suggest that diverting flow from the ditch network to surface or subsurface flow had a limited impact on concentrations or fluxes of DOC entering the stream network. The subdued response of fluvial carbon to ditch blocking in our study may be attributable to the relatively low susceptibility of blanket peatlands to drainage, or to physical alterations of the peat since drainage. We conclude that ditch blocking cannot be always be expected to deliver reductions in fluvial carbon loss, or improvements in the quality of drinking water supplies.  相似文献   

2.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Over an oceanic peatland, the concentration of Na in fog averaged 38.1 mgl?1 compared with 1.8 mgl?1 in rain, resulting in a significant flux of mineral elements to the surface. Between 16 May and 20 June 1990 the average mass flux of Na to the bog surface by fog, rain, and dry deposition was 21.9, 10.4 and 7.0 mg m?2 d?1. There was little long-term storage of Na within the peatland system, where Na losses measured in stream runoff averaged 34.8 mg m2 d?1, and deep groundwater losses 4 mg m?2 d?1. Calcium and Mg were preferentially retained in the organic soil, whereas K was relatively mobile. Potassium tended to become concentrated in the unsaturated zone. Stream runoff had a consistently higher pH than groundwater, corresponding to higher Ca and Mg concentrations, which may have been from mineral sources in the headwater ponds. Otherwise, the stream water chemistry was closely related to groundwater in the upper layers of the peat deposit.  相似文献   

4.
Water repellency (WR) from fire‐affected soils can affect infiltration processes and increase runoff rates. We investigated the effects of fire‐induced changes in soil WR and the related soil hydrological response after one of the largest wildfires in Spain in recent years. The vertical distribution of WR in soil profiles was studied under oak and pine forests and the wetting pattern was analysed after rainfall simulations (85 mm h?1 during 60 min). After burning, the persistence of WR in soils under oaks increased in the upper 0–5 cm of soil in comparison with pre‐fire WR, but no significant changes were observed under pines. After a fire, WR was stronger and the thickness of the water‐repellent layer increased in soils under pines in the upper 0–16 cm of soil. The hydrophobic layer was thinner under oaks, where no strong to extremely water‐repellent samples were observed below 12 (in burnt soils) and 8 cm (in unburnt soils). Uniform wetting was observed through soil depth in burnt and unburnt soils under oaks, as a consequence of the prevailing matrix flux infiltration. Water was mostly stored in the upper few centimetres and soil became rapidly saturated, favouring a continuous rise in the runoff rate during the experiments. Moisture profiles under pines showed a heterogeneous wetting pattern, with highly irregular wetting fronts, as a result of wettable and water‐repellent three‐dimensional soil patches. In this case, runoff rates on burnt plots increased in relation to unburnt plots, but runoff generation reached a steady state after 25–30 min of simulated rainfall at an intensity of 85 mm h?1. Rainfall water infiltrated over a small part of the ponded area, where the vertical pressure of the water column overcame the WR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
J. Holden  T. P. Burt 《水文研究》2003,17(6):1227-1237
A key parameter used in wetland hydrological and landform development models is hydraulic conductivity. Head recovery tests are often used to measure hydraulic conductivity, but the calculation techniques are usually confined to rigid soil theory. This is despite reports demonstrating the misapplication of rigid soil theory to non‐rigid soils such as peats. Although values of hydraulic conductivity calculated using compressible techniques have been presented for fenland peats, these data have never, to the authors' knowledge, been compared with such calculations in other peat types. Head recovery tests (slug withdrawal) were performed on piezometers at depths ranging from 10 to 80 cm from the surface on north Pennines blanket peats. Results were obtained using both rigid and compressible soil theories, thus allowing comparison of the two techniques. Compressible soil theory gives values for hydraulic conductivity that are typically a factor of five times less than rigid soil calculations. Hydraulic conductivity is often assumed to decrease with depth in upland peats, but at the study site in the northern Pennines it was not found to vary significantly with depth within the range of peat depths sampled. The variance within depth categories was not significantly different to the variance between depth categories showing that individual peat layers did not have characteristic hydraulic conductivity values. Thus, large lateral and vertical differences in hydraulic conductivity over short distances create problems for modelling but may help account for the high frequency of preferential flow pathways within what is otherwise a low matrix hydraulic conductivity peat. Hydraulic conductivity was found to vary significantly between sampling sites, demonstrating that hillslope‐ or catchment‐scale variability may be more important than plot‐scale variability. Values for compressibility of the peats are also reported. These generally decline with depth, and they also vary significantly between sampling sites. There are implications for the way in which measurements of hydraulic conductivity and other properties of blanket peat are interpreted, as the effects of environmental change in one part of a peat catchment may be very different to those in another. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Four micro‐catchment (MC) areas were identified to represent the main terrain types of a remote, sparsely populated upland valley catchment of 18 km2 in Cumbria, UK. These were improved land with good grazing (IB), steeply sloping land with rough grazing (SG), wet moorland with sparse grazing (WM) and enclosed woodland that excluded livestock and deer (EW). Each MC contained the origin of a small stream that flowed into Swindale Beck, the river draining the valley. The water quality during the 14‐month study, as judged by chemical and physical parameters, was excellent, but it could not be regarded as pristine because of the frequent presence of Cryptosporidium oocysts arising from livestock and wild mammal faeces. Oocysts (0·2–5·6 l?1) detected by genus‐specific immunofluorescent antibody were found in 32% of 188 water samples tested: ranking order EW 44%, IB 34%, Beck 30%, SG and WM 26%. Similarly, oocysts were identified in 9·5% of 1730 faecal samples. Small wild mammals (28%), calves (15·7%) and lambs (8·1%) were the dominant sources, whereas adult livestock (1·8%) and large wild mammals (4·8%) were less important. Autumn showed the highest occurrence of oocysts for both water and faecal samples. No hydrological controls were found to have a significant impact on the occurrence or concentration of oocysts in the main river or in the MCs, suggesting that their presence is controlled by seasonal changes in pathogen prevalence in the animal reservoir. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A simple modelling framework for assessing the response of ungauged catchments to land use change in South‐Western Australia is presented. The framework uses knowledge of transpiration losses from native vegetation and pasture and then partitions the ‘excess’ water (resulting from reduced transpiration after land use change) between runoff and deep storage. The simple partitioning is achieved by using soft information (satellite imagery, previous mapping and field assessment) to delimit the spread of the permanently saturated area close to the stream. Runoff is then assumed to increase in proportion to the saturated area, with the residual difference going to deep storage. The model parameters to describe the annual water yield are obtained a priori and no calibration to streamflow is required. We tested the model using gauged records over 25 years from paired catchment experiments in South‐Western Australia. Very good estimates of runoff were obtained from high rainfall (>1100 mm yr−1) catchments (R2 > 0·9) and for low rainfall (<900 mm yr−1) catchments after clearing (R2 = 0·96) but results were poorer (R2 = 0·55) for an uncleared low rainfall catchment, although overall balances were reasonable. In the drier uncleared catchments, the within‐year distributions of rainfall may exert a substantial influence on runoff response that is not completely captured by the presented model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A physically based SVAT‐model was tested with soil and snow physical measurements, as well as runoff data from an 8600 m2 catchment in northern Sweden in order to quantify the influence of soil frost on spring snowmelt runoff in a moderately sloped, boreal forest. The model was run as an array of connected profiles cascading to the brook. For three winter seasons (1995–98) it was able to predict the onset and total accumulation of the runoff with satisfactory accuracy. Surface runoff was identified as only a minor fraction of the total runoff occurring during short periods in connection with ice blocking of the water‐conducting pores. Little surface runoff, though, does not mean that soil frost is unimportant for spring runoff. Simulations without frost routines systematically underestimated the total accumulated runoff. The possibility of major frost effects appearing in response to specific combinations of weather conditions were also tested. Different scenarios of critical initial conditions for the winter, e.g. high water saturation and delayed snow accumulation leading to an increased frost penetration, were tested. These showed that under special circumstances there is potential for increased spring runoff due to soil frost. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
水利工程兴建后洞庭湖径流与泥沙的变化   总被引:6,自引:6,他引:6  
本文根据1951—1988年洞庭湖及其入湖河流的水文泥沙资料,研究大型水利工程兴建后洞庭湖径流与泥沙的变化。研究表明,近40年来洞庭湖的径流量减少了29.2%,输沙量减少了48.7%。引起水沙变化的主要原因是荆江四口分流河床的淤积,使荆江入湖的径流量与输沙量减少。1966—1972年下荆江三个弯道裁弯取直,使荆江河床下切,导致荆江及其分流水位的下降,也促使荆江分流的流量与输沙量的减少。40年来洞庭湖水流变化的趋势对洞庭湖、江汉平原与长江中下游的防洪较为有利。  相似文献   

10.
The increase of surface runoff at the plot scale caused by soil water repellency is a generally accepted phenomenon. However, to improve the understanding of the effect of water repellency on runoff at the catchment scale, spatio‐temporal dynamics of water repellency have to be analysed in more detail. The experimental setup of this study allowed the investigation of the relationship between water repellency and runoff generation on Quaternary and Tertiary sandy substrates while ensuring similar conditions in terms of terrain characteristics, meteorological and vegetation‐free conditions on both areas. Measurements of water drop penetration time and contact angle were carried out over a period from September 2003 to December 2005. Spatial variability of actual soil water repellency was related to heterogeneity of substrate and geomorphologic units, variations in time were related with the seasons and their meteorological conditions. To relate variable degrees of actual water repellency to surface runoff generation, both variables were measured in parallel at the plot scale (1 m × 1 m) and at the hillslope scale from September 2004 to December 2005. Soil water repellency of the Tertiary sands showed a temporal variability depending on the season, with the highest degree during summer and autumn. Variation of hydrophobicity between the seasons caused higher runoff coefficients in summer and autumn. Spatial heterogeneity of the soil water repellency revealed lower values in fine‐textured erosion rills and higher values for interrills and top areas. The measured runoff coefficients decreased from the scale of microplots to the hillslope scale due to infiltration in hydrophilic rills on the hillslope. The results suggest that improved hydrological modelling approaches on water‐repellent soils can be based on a geomorphological subdivision of the catchment area and seasonally varying infiltration parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The runoff of the Selenga R., the largest tributary of Lake Baikal, in recent two decades corresponds to a low-water period. Such decrease can be due to the global climate processes, which have an effect on the amounts of precipitation onto and evaporation from Selenga drainage basin, which is located in arid climate zone. The adaptation of Ecomag software complex to simulating river runoff in the Selenga Basin based on global databases (relief, soils, vegetation, and weather information) is described. The model was calibrated and verified, and the statistical estimates of calculation efficiency were constructed. The obtained model of runoff formation in the Selenga Basin was used to assess the possible changes in the climate and water regime in the XXI century with the use of data of global climate models under different scenarios of greenhouse gas emissions. Throughout the XXI century, the Selenga R. runoff may decrease by 10–40%, depending on the forecasted climate conditions.  相似文献   

13.
To determine how soil frost changes flowpaths of runoff water along a hillslope, a transect consisting of four soil profiles directed towards a small stream in a mature forest stand was investigated at Svartberget, near Vindeln in northern Sweden. Soil temperature, unfrozen water content, groundwater level and snow depth were investigated along the transect, which started at the riparian peat, and extended 30 m upslope into mineral soils. The two, more organic‐rich profiles closest to the stream had higher water retention and wetter autumn conditions than the sandy mineral soils further upslope. The organic content of the soil influenced the variation in frost along the transect. The first winter (1995–96) had abnormally low snow precipitation, which gave a deep frost down to 40–80 cm, whereas the two following winters had frost depths of 5–20 cm. During winter 1995–96, the two organic profiles close to the stream had a shallower frost depth than the mineral soil profile higher upslope, but a considerably larger amount of frozen water. The fraction of water that did not freeze despite several minus degrees in the soil was 5–7 vol.% in the mineral soil and 10–15 vol.% in the organic soil. From the measurements there were no signs of perched water tables during any of the three snowmelt periods, which would have been strong evidence for changed water flowpaths due to soil frost. When shallow soil layers became saturated during snowmelt, especially in 1997 and 1998, it was because of rising groundwater levels. Several rain on frozen ground events during spring 1996 resulted in little runoff, since most of the rain either froze in the soil or filled up the soil water storage. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model.  相似文献   

16.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Following recommendations by the 19th Royal Commission on Environmental Pollution, the area, causes and rates of upland soil erosion in England and Wales were investigated between 1997 and 1999. This paper describes the methods and results of the field survey of 1999 in which the extent of eroded ground was determined. 2. The area of degraded soil and the volume of eroded material were both determined from the dimensions of individual erosion features at 399 field sites located on an orthogonal grid across the uplands. Using measurements of individual erosion features, degraded soil extent in upland England and Wales was estimated at almost 25 000 ha, 2·46 per cent of the total upland area surveyed. Half this eroded area was revegetated and no longer subject to continued accelerated soil loss in 1999. The total volume of eroded material was estimated at 0·284 km3. Although deposition of eroded material occurred within 20 per cent of eroded field sites, the total volume of redeposited material was less than 1 per cent of the total volume of eroded soil. 3. Erosion was more extensive on peat soils than on dry, wet mineral or wet peaty mineral soils. In addition, the higher incidence of erosion at high altitudes and on low slopes reinforced the relationship between erosion and areas of peat formation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In sparsely cropped farming systems in semi-arid tropics, rainfall partitioning can be complex due to various interactions between vertical and horizontal water flows, both in the atmosphere and in the soil. Despite this, quantifying the seasonal rainfall partitioning is essential, in order to identify options for increased yields. Results are presented on water flow components, based on field measurements and water balance modelling, for three years (1994–96) in a farmer's field cultivated with pearl millet [Pennisetum glaucum (L.) Br.] in the Sahel (Niger). Water balance modelling was carried out for three common infiltration categories: runoff producing surfaces, surfaces receiving inflow of runon water from upstream zones, and a reference surface with zero runoff and runon. Runoff was calculated to 25%–30% of annual rainfall (which ranged from 488 to 596 mm), from crust observations, rainfall, soil wetness data, and infiltration estimates. Inflow of runon was estimated from field observations to 8%–18% of annual rainfall. The parameters in the functions for soil surface and canopy resistances were calibrated with field measurements of soil evaporation, stomatal conductance and leaf area. The model estimates of soil water contents, which were validated against neutron probe measurements, showed a reasonable agreement with observed data, with a root mean square error (RMSE) of approximately 0.02 m3 m−3 for 0–160 cm soil depth. Estimated productive water flow as plant transpiration was low, amounting to 4%–9% of the available water for the non-fertilised crop and 7%–24% for the fertilised crop. Soil evaporation accounted for 31%–50% of the available water, and showed a low variation for the observed range of leaf area (LAI <1 m2 m−2). Deep percolation was high, amounting to 200–330 mm for the non-crusted surfaces, which exceeded soil evaporation losses, for 1994–95 with relatively high annual rainfall (517–596 mm). Even a year with lower rainfall (488 mm) and a distinct dry spell during flowering (1996), resulted in an estimated deep percolation of 160 mm for the non-fertilised crop. The crop did not benefit from the additional inflow of runon water, which was partitioned between soil water storage and deep percolation. The only exception to this was the fertilised crop in 1996, where runon somewhat compensated for the limited rainfall and the higher water demand as a result of a larger leaf area than the non-fertilised crop. The effects of rainfall erraticness, resulting in episodic droughts, explain why a crop that uses such a small proportion of the available water, in an environment with substantial deep percolation, still suffers from water scarcity. Application of small levels of phosphorus and nitrogen roughly doubled yields, from 380 to 620 kg ha−1, and plant transpiration, from 33 to 78 mm. Evapotranspirational water use efficiency (WUEET) was low, 6500–8300 m3 ton−1 grain for non-fertilised crop, which is an effect of the low on-farm yields and high non-productive water losses. The estimated seasonal rainfall partitioning indicates the possibility of quantifying vertical water flows in on-farm environments in the Sahel, despite the presence of surface overland flow.  相似文献   

19.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   

20.
A water budget was established for the open, undisturbed bog Stormossen, central Sweden, for the growing seasons of 1996 and 1997 as a part of the NOPEX project. The water budget was complemented with data on the spatial variation of groundwater levels and water contents in different microrelief elements (ridge, hollow and ridge margin). The seasonal (24 May to 4 October) rainfall, evaporation and runoff were 200, 256, and 43 mm in 1996, respectively, and 310, 286 and 74 mm in 1997, giving negative budgets of ?99 mm in 1996 and ?50 mm in 1997. Approximately 60% of the total budget was caused by storage changes in the upper 40 cm of the bog and 40% by swelling/shrinking in the layers below. This ‘mire breathing’ must be incorporated in future models of mire‐water dynamics. The water content varied diversely among the different microrelief elements, much depending on the properties of moss and peat together with distance to water table. There also was a strong hysteresis in the relationships between groundwater level and measured volumetric water content, depending partly on pore‐throat effects and partly on swelling/shrinking of the peat matrix. A seasonal variation of volumetric water content in a layer beneath water table was found to be larger than what could be justified by compression alone. We think that probable causes could be methane gas expansion together with temperature effects. The main conclusions of this study were: (i) water‐transport and storage characteristics are distinctly different among hummocks, ridges and hollows, (ii) mire wetness cannot be deduced from groundwater levels only, and (iii) an important part of the total water storage was caused by swelling/shrinking of the peat, not by changes in unsaturated water content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号