首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
山脉力矩是大气轴向角动量变化的主要外部因子之一,是研究地球运动和大气相互作用的关键变量。利用NCEP/NCAR第一套再分析资料计算了1948—2011年的全球山脉力矩,定量分析了全球山脉力矩的时空变化趋势及其与地球自转速率(以日长表示)的关系。研究表明,近64年山脉力矩变化最为显著的地区集中在青藏高原和南美的安第斯山脉,青藏高原东西两侧的山脉力矩具有不同的变化趋势。滞后相关分析显示,全球山脉力矩与日长的相关系数在日长滞后5年时达到最大(滞后相关系数为-0.482),而南美安第斯山和青藏高原的山脉力矩则分别于日长滞后2年和9年时达到最大(滞后相关系数分别为-0.461和-0.689),因此山脉力矩的变化早于日长变化。从年代际变化看,全球积分的山脉力矩和南亚高压强度指数趋势上基本一致,可以作为表征天气、气候变化的一个强信号。  相似文献   

2.
王亚非  魏东  李琰 《高原气象》2011,30(5):1189-1194
利用NCEP/NCAR再分析资料计算了1998年5~6月区域角动量收支的主要分量,对比分析了范围较大的欧亚区域角动量矩和限制在欧亚大陆范围内的喜马拉雅山角动量矩的差异,发现两者有很好的相关,限制较小范围的计算表明,喜马拉雅山山脉力矩的作用显著。角动量收支项占较大量级的山脉力矩和摩擦力矩,并与梅雨锋区域的700hPa高度...  相似文献   

3.
季风指数及其年际变化I·环流强度指数   总被引:1,自引:0,他引:1  
季风环流可以分解为经向环流和纬向环流。使用NCEP和ECMWF再分析资料,计算亚洲季风区的经向动量环流和纬向动量环流强度的季节内和年际变化,结果表明:对于南亚夏季风和东南亚-西太平洋夏季风,其各自的经向环流和纬向环流的季节内变化和年际变化存在着相当的联系,尤其东南亚-西太平洋夏季风。但南亚夏季风的经向环流和纬向环流的年际变化在不同月份有着不同的关系。对于东亚夏季风,经向环流和纬向环流变化之间的相关在季节内尺度上是线性独立的,而在年际尺度上存在一定的联系。作者指出:这种大尺度上的联系是通过科里奥利力发生作用,并且受热源调节的。同时局地的对流和辐射相互作用则在某种程度上削弱这种联系,导致在不同月份相关程度有所不同。从各季风系统的经向环流之间或纬向环流之间的线性相关看,南亚夏季风,东亚夏季风和东南亚-西太平洋夏季风是相互独立的系统。计算表明,Webster-Yang和Wang-Fan分别提出的南亚夏季风指数在描述纬向环流年际变化上较好,而在经向上勉强令人满意。Wang-Fan提出的描述东南亚-西太平洋夏季风指数,则较好地表示了该区域的经向和纬向环流的年际变化。Goswami提出的季风Hadley环流指数,以及郭其蕴、施能等提出的东亚夏季风指数则较好地描述了相应区域的经向环流圈年际变化,却无法描述相应的纬向环流圈的年际变化。通过计算还表明,NCEP再分析资料和ECMWF再分析资料在1968年以前的南亚季风区和东亚季风区存在着较大的差异。用NCEP再分析资料计算东亚季风区和南亚季风区经向动量环流圈的变率在20世纪60年代较ECMWF的偏大。用NCEP再分析资料计算施能等定义的东亚季风区指数,也较使用ECMWF再分析资料、UCAR的DS010.1及CRU的北半球海平面气压资料计算的偏大。  相似文献   

4.
季风环流可以分解为经向环流和纬向环流.使用NCEP和ECMWF再分析资料,计算亚洲季风区的经向动量环流和纬向动量环流强度的季节内和年际变化,结果表明:对于南亚夏季风和东南亚-西太平洋夏季风,其各自的经向环流和纬向环流的季节内变化和年际变化存在着相当的联系,尤其东南亚-西太平洋夏季风.但南亚夏季风的经向环流和纬向环流的年际变化在不同月份有着不同的关系.对于东亚夏季风,经向环流和纬向环流变化之间的相关在季节内尺度上是线性独立的,而在年际尺度上存在一定的联系.作者指出:这种大尺度上的联系是通过科里奥利力发生作用,并且受热源调节的.同时局地的对流和辐射相互作用则在某种程度上削弱这种联系,导致在不同月份相关程度有所不同.从各季风系统的经向环流之间或纬向环流之间的线性相关看,南亚夏季风,东亚夏季风和东南亚-西太平洋夏季风是相互独立的系统.计算表明,Webster-Yang和Wang-Fan分别提出的南亚夏季风指数在描述纬向环流年际变化上较好,而在经向上勉强令人满意.Wang-Fan提出的描述东南亚-西太平洋夏季风指数,则较好地表示了该区域的经向和纬向环流的年际变化.Goswami提出的季风Hadley环流指数,以及郭其蕴、施能等提出的东亚夏季风指数则较好地描述了相应区域的经向环流圈年际变化,却无法描述相应的纬向环流圈的年际变化.通过计算还表明,NCEP再分析资料和ECMWF再分析资料在1968年以前的南亚季风区和东亚季风区存在着较大的差异.用NCEP再分析资料计算东亚季风区和南亚季风区经向动量环流圈的变率在20世纪60年代较ECMWF的偏大.用NCEP再分析资料计算施能等定义的东亚季风区指数,也较使用ECMWF再分析资料、UCAR的DS010.1及CRU的北半球海平面气压资料计算的偏大.  相似文献   

5.
利用ERA-Interim、MERRA和NCEP/NCAR三套再分析资料,分析1979~2014年夏季青藏高原大气水汽含量的时空变化特征,同时对比了各套资料异同点,结果表明:(1) ERA-Interim和MERRA资料均显示出夏季青藏高原大气水汽含量呈现显著的上升趋势,在1994~1995年前后发生明显突变,大气水汽含量由偏低时期向偏高时期转变;而NCEP/NCAR资料并没有出现类似的显著上升趋势和突变年份;ERA-Interim资料与MERRA资料的夏季青藏高原湿池指数之间的相关性明显强于NCEP/NCAR资料与它们任何一个之间的相关性。(2)夏季青藏高原大气水汽含量呈现出自高原东南边缘地区向西北部递减的分布形式。其中,MERRA与ERA-Interim资料显示的水汽含量分布更为相似,而NCEP/NCAR资料反映的水汽含量在高原中部往北递减不明显,湿度中心较为分散。(3)从空间分布上,MERRA与ERA-Interim资料显示青藏高原大部分地区夏季水汽含量均呈显著的增加趋势,而NCEP/NCAR资料仅在高原东北部小部分区域存在显著的增加趋势。(4)从夏季青藏高原大气水汽含量的年际变化特征分析来看,ERA-Interim和MERRA资料相对于NCEP/NCAR资料也更为接近。   相似文献   

6.
多种再分析资料中热带气旋潜在生成指数分析   总被引:3,自引:3,他引:0  
根据7套再分析资料计算的热带气旋潜在生成指数(GPI),分析了GPI对西北太平洋区域台风盛季(7—9月)热带气旋生成的表征能力。结果表明,虽然这些再分析资料计算得到的GPI的空间分布与观测的热带气旋生成特征都比较一致。但是,在时间变化上7套再分析资料计算的GPI对观测热带气旋生成的表征能力差异较大,其中ERA-40(欧州中期天气预报中心再分析资料)和MERRA(美国国家航空和航天局研究和应用再分析资料)的GPI与观测的相关系数较高。进一步分析表明,各套资料GPI之间时间变化的差异主要来自相对湿度,而ERA-40和MERRA的GPI与观测值有较高的相关系数,也与相对湿度有密切关系。  相似文献   

7.
利用中国高空探空资料和NCEP/NCAR、ERA以及MERRA三种再分析资料,讨论了再分析资料风速场在中国区域的适用性问题。结果表明:在中国区域的年平均场上,高空风速在我国对流层高层和中层均存在长期减弱的趋势,在我国东部和南部地区的对流层低层也存在减弱趋势,ERA-interim资料和MERRA资料适用性相对较好。再分析资料风速在多年年平均场上普遍小于探空风速。在对流层高层,1980年代至1990年代ERA-interim资料适用性好,而21世纪以后,NCEP/NCAR的适用性较好;在对流层中层和低层,NCEP/NCAR资料适用性较好。在中国区域的季节平均场上,高空风速在冬季的对流层高层和中层中普遍存在增加的趋势,而在春季、夏季和秋季的对流层高层和中层存在减小的趋势。探空资料与再分析资料在冬季偏差最小,在夏季偏差最大。在对流层中层和低层,NCEP/NCAR资料和MERRA资料在冬季的可信度相对较好,MERRA资料在夏季的可信度相对较好;在对流层高层和平流层低层,ERA-interim资料和MERRA资料在四季中的可信度都相对较好。  相似文献   

8.
两种再分析资料平流层温度场的对比分析   总被引:4,自引:0,他引:4  
在Lorenz环流分解基础上,比较了全球平流层低层ECMWF和NCEP/NCAR两种再分析资料月平均温度场的差异。结果表明:(1)纬向的平均温度无论DJF季度还是JJA季度100 hPa,30°S~30°N纬带都是冷中心;在该冷纬带ECMWF资料温度均值显著低于NCEP资料,ECWMF资料的年际方差显著小于NCEP资料。(2)30 hPa以上NCEP资料的定常波比较杂乱,在中纬大陆上出现与事实不符的高低中心,而ECMWF资料反映的气温定常波则比较合理。(3)ECMWF资料在100 hPa和10 hPa上气温异常未能充分地反映近50 a来3次强的火山喷发引起的平流层增温。  相似文献   

9.
利用目前国际上应用较为广泛的两套再分析资料:NCEP/NCAR再分析的陆地表面温度(1and surface temperature or skin temperature,简称LST)及欧洲中期天气预报中心ERA40表层土壤温度(ECMWF—STLl)资料,揭示了两组资料反映的春、夏季陆面热力状况分布特征及变率的异同。结果表明:1)两套资料的全球春季陆面热力状况气候态分布均反映出表面温度从赤道向两极递减的趋势,但在中低纬地区,ECMWF—STLl高于LST,高纬度地区情况相反。夏季,除格陵兰岛外,两套资料陆面热力状况气候态分布基本相同。2)春季ECMWF—STLl、LST变率类似,均表现为北半球中高纬地区表面温度变率大的特征。相比而言,欧亚大陆北部ECMWF—STLl变率较LST明显,南部相反。夏季,温度变率较大的区域主要位于非洲中部、欧亚大陆北部及美洲部分地区,其中,南北美洲两套资料温度变率差别较大。3)分析EOF第一模态发现,两套资料均表现出春季欧亚大陆热力状况南北反相变化的特征,澳大利亚及南北美洲地区两套资料空间分布型位相正好相反。对于夏季而言,两套资料均反映出欧亚大陆及非洲的一致性变化特征,而其他地区差别较大;4)春季增温显著的地区主要位于欧亚大陆中高纬,相比而言,欧亚大陆北部ECMWF—STLl升温较明显,南部LST降温较明显。夏季,非洲、欧亚以及北美洲地区,两套资料升降温趋势分布相似,但LST升降温幅度均较ECMWF—STLl大。总之,两套资料对热力状况的描述在非洲及欧亚大陆上相似性较大,而在澳大利亚、格陵兰岛及南北美洲地区有一定的差别。另外,对青藏高原地区的热力状况的描述两套资料差别较大。  相似文献   

10.
选取NCEP1、NCEP2和ERA-Interim中1981—2010年共30 a的风场、温度场和地面气压场再分析资料,利用"倒算法"计算青藏高原大气热源,对三套资料的计算结果进行了多方面比较分析,并运用Morlet小波法分析了区域平均的高原热源的时间变化特征。结果显示:(1)三套资料计算的季节平均的热源在空间分布上基本一致,夏季高原大部分地区为热源,冬季除高原西北部是热源外,其余地区为冷源。其中,ERA-Interim与NCEP1的分布更为接近;(2)三套资料均表明:就30 a平均而言,青藏高原大气为显著的热源,分布上ERA-Interim与NCEP1相似,量值上NCEP的两套资料更为接近;(3)区域平均热源的月际变化十分一致,相关系数均超过99%显著性检验。NCEP的两套资料对年际变化的描述更为一致,二者相关系数为0.88,ERA-Interim与NCEP两套资料的结果略有差距,相关系数分别为0.78和0.70;(4)整体而言,ERA-Interim资料在反映高原热源方面较优,但也要注意考察该资料给出的高原南坡强热源的真实合理性。  相似文献   

11.
梁嘉俊  孙即霖   《山东气象》2020,40(2):62-70
利用1981—2017年NCEP/NCAR再分析资料和ECMWF再分析资料,研究了北美洲冬季高纬度冷空气对南美洲夏季降水异常的影响。结果表明,北美洲冬季高纬度冷空气通过影响向南越赤道气流的强弱,影响南美洲热带辐合带(intertropical convergence zone, ITCZ)位置和强度的变化,进一步引起南美洲天气的变化。北美洲冬季冷空气的南下过程能够引起80°~70°W的向南越赤道气流明显加强,导致2011年南美洲热带辐合带的位置异常偏南,强度异常偏强,是造成降水异常偏多的重要成因。通过相关分析发现北美洲冬季冷空气对南美洲ITCZ位置的影响更明显。  相似文献   

12.
利用中国105站的探空资料以及NCEP/NCAR、ERA和JRA 3种再分析资料,采用线性趋势、标准差、相关系数、EOF分析等多种统计分析方法,对再分析资料年平均的高空温度在中国区域的可信度进行了分析.研究表明:在数值上,3种再分析资料的高空温度均小于探空资料的高空温度,NCEP/NCAR资料在对流层上层更接近于探空资料,ERA和JRA资料则在对流层中下层与探空资料更为接近;在描述年际变化和长期变化趋势方面,ERA资料在我国北方的对流层上层的再现能力较好,NCEP/NCAR资料在我国南方的对流层上层的再现能力较好,而3种再分析资料在对流层中下层的再现能力相当;在时空变化特征方面,NCEP/NCAR和ERA资料能较好地表现高空温度的年代际变化特征,而ERA和JRA资料则能较好地表现年际变化特征.  相似文献   

13.
In this study, the global Lorenz atmospheric energy cycle is evaluated using the Modern Era Retrospective analysis for Research and Applications (MERRA) and the National Center for Environmental Prediction and the Department of Energy (NCEP R2) reanalysis datasets over a 30-year period (1979–2008) for the annual, JJA, and DJF means. The energy cycle calculated from the two reanalysis datasets is largely consistent, but the energy cycle determined using the MERRA dataset is more active than that determined from the NCEP R2 dataset. For instance, with regard to the annual mean, the general discrepancy between the energy components in the global integral is about 5 %, whereas the discrepancy between the conversion components is about 16  %, with the exception of C(PM, KM), which has a different sign in the global integrals. The latitude-altitude cross-section indicates that the difference in the energy cycle of the two reanalysis datasets is larger in the southern hemisphere than in the northern hemisphere. The conversion rates of mean available potential energy to mean kinetic energy [C(PM, KM)] and eddy available potential energy to eddy kinetic energy [C(PE, KE)] are also calculated using two formulations (so-called ‘v·grad z’ and ‘ω·α’) for the two reanalysis datasets. The differences in the conversion rate between the two reanalysis datasets for the global integral are not appreciable for the two formulations.  相似文献   

14.
Tropical cyclone(TC) genesis over the western North Pacific(WNP) is analyzed using 23 CMIP5(Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index(GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets(ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July–October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTr ACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982–2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble(MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20?N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982–1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21 st century, and then starts to decrease at the end of the 21 st century under the representative concentration pathway(RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of20?N, indicating more TCs could possibly be expected over the WNP under future global warming.  相似文献   

15.
利用江苏省2010—2015年的60个站点土壤湿度观测资料,对欧洲中心ERA-Interim再分析资料(ERA)和美国宇航局再分析资料(MERRA)的两套土壤湿度数据在江苏地区的可靠性进行了评估。结果表明:相比于ERA再分析资料,MERRA较好地再现出江苏省次表层年平均土壤湿度的空间分布特征,但是两种资料的次表层和深层土壤湿度的数值均小于观测。ERA和MERRA基本都能揭示出江苏省次表层土壤湿度的季节变化特征,但是深层土壤湿度与观测仍有较大差距。在时间演变方面,ERA次表层土壤湿度与站点观测在研究时段内较为接近,EOF分析揭示出1979—2016年江苏省次表层土壤湿度存在区域一致型与南北偶极型两个主要的年代际变率模态。但是对于深层土壤湿度时间演变而言,两种再分析资料都与观测有较大的差距。总体而言,再分析资料的次表层土壤湿度与站点观测较为接近,但是由于再分析资料陆面模式中地下水等影响深层土壤湿度的关键过程刻画较为简单,使得深层土壤湿度与观测有较大的差距。  相似文献   

16.
The spatial and temporal consistency of seasonal air temperature and precipitation in eight widely used gridded observation-based climate datasets (CANGRD, CRU-TS3.1, CRUTEM4.1, GISTEMP, GPCC, GPCP, HadCRUT3, and UDEL) and eight reanalyses (20CR, CFSR, ERA-40, ERA-Interim, JRA25, MERRA, NARR, and NCEP2) was evaluated over the Canadian Arctic for the 1950–2010 period. The evaluation used the CANGRD dataset, which is based on homogenized temperature and adjusted precipitation from climate stations, as a reference. Dataset agreement and bias were observed to exhibit important spatial, seasonal, and temporal variability over the Canadian Arctic with the largest spread occurring between datasets over mountain and coastal regions and over the Canadian Arctic Archipelago. Reanalysis datasets were typically warmer and wetter than surface observation-based datasets, with CFSR and 20CR exhibiting biases in total annual precipitation on the order of 300?mm. Warm bias in 20CR exceeded 12°C in winter over the western Arctic. Analysis of the temporal consistency of datasets over the 1950–2010 period showed evidence of discontinuities in several datasets as well as a noticeable increase in dataset spread in the period after approximately 2000. Declining station networks, increased automation, and the inclusion of new satellite data streams in reanalyses are potential contributing factors to this phenomenon. Evaluation of trends over the 1950–2010 period showed a relatively consistent picture of warming and increased precipitation over the Canadian Arctic from all datasets, with CANGRD giving moistening trends two times larger than the multi-dataset average related to the adjustment of the station precipitation data. The study results indicate that considerable care is needed when using gridded climate datasets in local or regional scale applications in the Canadian Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号