首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
姚慧茹  李栋梁  王慧 《气象学报》2017,23(3):384-399
利用1981-2012年中国西北东部198个台站的逐日气象观测数据和ERA-Interim再分析资料,分析了近32年中国西北东部夏季不同强度降水的雨日和雨量的变化特征,并对比了产生不同强度降水的大气环流系统的异同。结果表明,西北东部夏季降水以小雨和中雨为主,二者占夏季雨日的90%以上、占夏季雨量的70%左右。小雨日数占总雨日的比率在空间上自东南向西北递增;中雨、大雨、暴雨和(特)大暴雨日数的比率自东南向西北递减。夏季小雨、中雨日数和降水量均呈减少的趋势,21世纪初的减少速率慢于20世纪80-90年代;暴雨则呈略微增多的趋势。通过对1981和2003年的个例分析发现,乌拉尔山阻塞高压、蒙古气旋和西北太平洋副热带高压增强西伸时,有利于北方干冷气流和南方暖湿气流在西北东部交汇,降水较多;反之则降水较少。在冷、暖空气均增强的背景下,若冷、暖气团的交界线偏南,西北东部主要受北方冷气团控制,南边界的水汽输送较微弱,易发生小雨;若冷、暖气团的交界线偏北,西北东部主要受到南方暖湿气团的影响,南边界的水汽输送和辐合较强,多出现强降水,降水强度取决于水汽的强度和上升运动的高度。  相似文献   

2.
长江流域夏季不同强度降水日数的时空变化特征   总被引:1,自引:1,他引:1  
李莹  朱益民  夏淋淋  王浩 《气象科学》2017,37(6):808-815
利用长江流域56个站点1957—2009年夏季逐日降水资料、NCEP/NCAR再分析资料以及Hadley海表温度资料,分析了长江流域夏季不同强度降水日数的时空变化及其相关的海气异常型。结果表明:(1)近53 a来,长江流域夏季大到暴雨日数占总降水日数的比率呈明显增加趋势,而中小雨日数占总降水日数的比率呈明显减少趋势。(2)长江流域夏季不同强度降水日数的变化及其相应的海气异常型表现为明显不同的特征。当前期春季海温距平场表现为典型的东部型El Nino分布形态,500 h Pa位势高度场呈现出"+-+"的经向PJ波列,西北太平洋副热带高压偏强,位置偏南偏西,中高纬地区乌拉尔山和鄂霍次克海地区出现双阻塞形势,南半球澳大利亚高压异常偏强,越赤道气流偏强,在30°N附近200 h Pa纬向西风急流异常偏强,850 h Pa风场在东亚上空经向方向上呈现出明显的反气旋—气旋—反气旋系统相间分布的特征时,有利于长江流域夏季大到暴雨降水日数偏多。  相似文献   

3.
东亚夏季风环流的异常对该地区降水异常有重要影响, 而低频降水又是季风活动的一个主要特征。研究揭示了1998年降水异常及其低频变化等观测事实,分析讨论了大尺度环流的4个异常特征。结果表明:1998年汛期长江流域出现二度梅,10~20 d低频振荡具有普遍性,而30~50 d的地域性较为明显;西太平洋副热带高压位置的异常、欧亚大陆中高纬度持续阻塞高压、高空西风带急流轴线活动异常及二次季风涌的出现及其相互配合是长江流域降水异常的主要影响系统。  相似文献   

4.
1981~2010年北京地区极端降水变化特征   总被引:6,自引:1,他引:5  
采用北京地区20个常规气象站1981~2010年逐日降水数据,对北京地区极端降水的空间分布特征进行了分析。得到以下主要结论:1981~2010年,北京地区极端降水百分位数(第90、95和99个百分位数)阈值表现出较一致的空间分布特征,以第95个百分位数阈值计算的极端降水日数与降水阈值和降水量的分布有较大差异,极端降水量对总降水量的贡献可达30%~37%,极端降水强度分布与极端降水阈值分布相似。近30年,北京地区多数站点的极端降水量、降水日数和降水强度呈下降趋势,极端降水量以上甸子、怀柔、平谷和观象台下降较为明显,可达到40 mm(10 a)–1以上,极端降水强度以顺义、海淀、观象台、大兴和上甸子等站下降较为显著,每10 a降水强度减小趋势可达4 mm d–1,极端降水日数变化分布与极端降水量变化分布类似,极端降水强度变化与降水量和降水日数变化的分布有明显不同。  相似文献   

5.
基于帕米尔高原东部100个气象站2013-2019年4-9月逐小时降水观测资料,分析了帕米尔高原东部降水量、降水频次和降水强度时空变化特征。结果表明:帕米尔高原东部年平均降水量呈南部少于北部,平原少于山区的特征。降水频次集中在西部山区,东南部最少。研究区北部和盆地边缘的降水强度大于西部和西南部的山区。逐月降水量呈北部和西北部高,盆地西部边缘地区最少,8月最多,4月最少。年平均降水频次逐月空间分布呈高值主要集中在研究区北部和西部,低值主要集中在盆地西部的边缘区域的特征。逐月降水强度的空间分布与降水量和频次也存在较大差异,降水强度在中间平原地区在4月最强。小时降水量峰值主要出现在12—23时,低值出现在00—10时。小时降水频次15时至次日 01时为强度高值时段,14—20时具有增长趋势。小时降水强度在日出前后达到最大值,其中00—09时为高值时段,10—23时为低值时段。帕米尔高原东部地区各月小时平均降水量主要集中在18时左右,降水频次主要集中在18—23时,夜间降水强度略微高于白天。年平均降水量,降水频次及降水强度与海拔高度之间存在明显的相关性,大概2500 m 以下降水量随着海拔高度的升高而增加,2500 m 以上降水量随着海拔高度的升高而降低。降水频次在3000 m 以下随着海拔高度的升高而增多,3000 m以上随着海拔高度的升高而减少。整体来讲,降水强度与海拔高度整体来呈负相关性,降水强度随着海拔高度的升高而减弱;大概2500 m 以下降水强度随着海拔高度而加强,2500 m 以上降水强度随着海拔高度的升高而减弱。  相似文献   

6.
7.
中国东部夏季降水的主相关型及其环流特征   总被引:5,自引:3,他引:5  
将中国东部夏季降水单点相关图中达统计显著性标准台站数最多的相关分布型定义为主相关型,讨论了与该雨型对应的环流异常特征。结果表明:长江中下游和河套地区的夏季降水对中国东部地区具有较好的空间代表性,且它们呈反相关变化,可以利用这两个地区的降水之差来描述中国东部夏季降水的最主要雨型。当雨带位于河套地区、长江中下游少雨时:长江中下游为偏东风,太平洋Walker环流偏强,南亚了风环流偏强,南亚高压位置偏北。  相似文献   

8.
利用19612015年陕西省70个气象观测站的逐日降水资料,采用线性倾向估计、趋势分析及Mann Kendall等方法,分析了陕西省不同等级降水量、降水日数及降水强度的气候变化特征。结果表明:无论是降水量、降水日数,还是降水强度,均呈现出南多北少的分布特征,且随着降水级别的逐级增加,地区分布差异逐渐增大;整体上降水量和降水日数呈现出减少趋势,其中降水日数的下降趋势均非常显著,全省年均降水日数的气候倾向率达到了-3.83天·10a-1,通过了0.01的显著性检验,降水强度的增加趋势通过了0.05的显著性检验,每10 a全省年均降水强度增加0.15 mm·d-1;陕西降水量及降水日数的减少主要体现在春秋两季小雨及中雨的减少上,小雨降水强度在夏、秋两季的气候倾向率分别为0.05和0.04 mm·d-1·10a-1,其上升趋势分别通过了0.01和0.1的显著性检验,这是年均降水强度上升的主要原因;陕西年均降水量及降水日数自1984年出现了突变性下降,而降水强度的突变则出现在2004年,之后一直呈现持续的上升趋势。  相似文献   

9.
该文利用1983--2012年ERA—INTERIM风场的月平均资料以及中国160站月降水资料(1983-2012年),研究Hadley环流的季节和年际变化特征,我国东部地区夏季降水分布及北半球春季Hadley环流强度与我国东部地区夏季降水的关系。结果表明:Hadley环流存在明显的季节变化特征,北半球环流强度在冬季最强,夏季时最弱,并且环流强度越强时,范围就越大;Hadley环流强度各季节年际变化较明显,而年代际变化秋季较明显。春季HMley环流强度与我国华南地区、长江流域地区和华北地区夏季降水呈“负正负”的相关关系。利用合成分析的得到的结果与其相一致。  相似文献   

10.
基于中国测站的降水资料和NCEP/NCAR逐日再分析资料,取第95百分位数作为极端降水阈值,通过经验正交函数分解(EOF)方法将中国东部分为华南、长江中下游、华北和东北三个地区,定义极端降水事件,并对中国东部夏季极端降水时空分布及环流背景进行研究。结果表明,极端降水事件随日期的变化与中国东部夏季雨带的南北移动相吻合。近54年来,华南极端降水事件频数在1991年左右突增,长江中下游地区有两次突变,1991年左右突增,2000年左右突减。华北和东北地区在1999年左右突减。发生极端降水事件时,低层850 hPa出现局地异常气旋环流,位势高度异常降低,对应低空异常辐合;中层500 hPa,西太副高位置异常偏南有利于华南极端降水的发生,副高西伸有利于长江中下游的极端降水,位置偏北易造成华北和东北极端降水;高层200 hPa,发生极端事件时降水关键区位于西风急流轴右侧,对应异常反气旋环流,这种高层辐散低层辐合的环流配置为极端降水提供动力条件。极端降水的气候平均态水汽主要来源于南半球和西北太平洋。副高的位置异常影响我国东部水汽输送异常,造成不同地区的极端降水。   相似文献   

11.
李潇  李栋梁  王颖 《气象学报》2015,73(4):737-748
利用1960—2010年中国西北东部地区39个气象站的逐日降水资料和NCEP/NCAR月平均地表感热通量再分析资料以及大气环流各要素场资料,通过多锥度-奇异值分解(MTM-SVD)等方法,分析了中国西北东部汛期降水、青藏高原东部春季感热的周期振荡特征以及它们在准周期循环上的协同耦合关系。结果表明,感热与降水均存在显著的准3 a周期,其耦合场在准3 a周期上表现也最为明显。当青藏高原东部春季感热在青藏高原主体上偏强(弱)时,对应中国西北东部汛期降水的异常偏多(少)。该准3 a周期循环上的协同关系在1960—1982年表现最为显著,1983—1990年为调整阶段,90年代之后又逐渐明显。青藏高原东部春季感热对大气环流的持续加热过程影响西北东部汛期降水,且主要体现在8月。  相似文献   

12.
周放  孙照渤  许小峰  施健 《气象学报》2014,72(3):447-464
采用1961—2010年NCEP/NCAR再分析资料,NOAA海表温度资料和中国国家气候中心整编的中国东部387站逐日降水资料,分析了中国夏季暴雨日数的分布特征及其与大气环流和海温的可能关系。结果表明:(1)近50年中国东部夏季暴雨日数经历了3次年代际变化,先后发生在20世纪70年代中后期、90年代初以及21世纪初。(2)根据经验正交函数(EOF)分析主模态的空间分布型,结合聚类分析的方法,将中国东部夏季暴雨日数主要分为6种类型:渤海型、北方型、淮河型、长江型、南方型、南方和北方两支型。该分型对实际暴雨日数分布具有较好的代表性。(3)分析中国东部夏季暴雨日数不同分布型的环流场特征,结果表明暴雨日数的分布类型与东亚夏季风密切相关,渤海型和北方型分布对应季风位置偏北,淮河型和长江型分布对应季风位置偏南,南方型分布时季风位置更加偏南,当暴雨日数呈现南方和北方两支型分布时,季风较强,影响中国东部大部分地区。(4)分析中国东部夏季暴雨日数不同分布型的水汽输送特征,结果表明,影响中国东部夏季不同暴雨日数分布型的水汽输送与西太平洋的异常反气旋式环流密切相关,形成暴雨的水汽更多来自于西太平洋。(5)分析中国东部夏季暴雨日数不同分布型的海温场特征,结果表明,渤海型和北方型暴雨日数多发生在拉尼娜发展或者维持时期;淮河型和长江型暴雨日数多发生在厄尔尼诺维持或者衰减时期;南方型暴雨日数多发生在厄尔尼诺发展时期;而当暴雨日数呈现出南方和北方两支型时,整个太平洋和北印度洋大部分地区均呈现出偏冷的状态,海、陆热力差异显著。  相似文献   

13.
以西北地区东部的17个代表站1470—2008年的旱涝等级资料和1958—2015年5—9月气象站降水量数据为基础,建立了546年中国西北地区东部旱涝等级序列,采用经验正交函数分解、滑动t检验等统计方法,对其干湿演变规律进行分析,详细讨论了546年极端干旱事件及干旱持续性特征。结果表明:旱涝等级资料能够较好地反映西北地区东部干旱变化的时、空特征;在百年尺度上,20世纪发生旱、偏旱最为频繁,且高值区位于宁夏及陕北;干旱尺度因子的空间分布表明宁夏东部及陕北地区的干旱持续性相对较强,陇南及陕西南部地区的干旱持续性较差;空间范围较大且强度较大的重大干旱事件对干旱的持续发生起重要作用,历史上发生在1470—1500年和1910—1940年的两次西北地区东部百年甚至两百年一遇的极端干旱事件,对该地区干旱持续性的影响较为显著。  相似文献   

14.
利用1961—2010年华南地区64个气象站的逐日降水资料,通过计算降水集中度指数Q,分析了华南夏季降水的结构。结果表明:夏季华南地区北部(南部)大部分地区降水集中度较小(大),表明该地区降水较为分散(集中)。在趋势变化上,近50年华南大部分地区夏季降水量和降水集中度都是增多的。北部和南部的降水量也均呈增加的趋势,北部增加更明显。另外,降水集中度在华南北部和南部也均呈增加的趋势,即降水呈现更集中的趋势,尤其是华南南部降水集中度增加更明显。此外,无论降水量为1 mm以上、25 mm以上还是50 mm以上的降水,持续1 d降水的雨日都在减少,而超过1 d的持续性降水过程都在增多。在空间分布上,华南大部分地区1 mm以上降水的雨日呈减少的趋势,而25 mm以上和50 mm以上的持续性降水过程呈增加的趋势。  相似文献   

15.
我国东部地区夏季不同等级降水日数年际变化特征分析   总被引:4,自引:3,他引:4  
用全国1958--2004年逐日降水资料,分析我国东部地区夏季总降水日数以及不同等级降水日数的年代际变化特征,结果表明,1980--2004年与1958--1979年两个时段相比,我国东部各地区夏季总降水日数和不同等级降水日数具有明显不同的变化特征。东北地区总降水日数和总降水量减少,这主要与小雨日数减少有关。华北地区总雨日数和总降水量也呈减少特征,总雨日数减少是由于各等级雨日数减少引起,且小雨日数减少贡献较大,而总降水量减少却主要是由于暴雨日数的减少引起。长江流域总降水日数和总降水量增加,总雨日数增多主要与中雨以上级别雨日数的增多有关,而总降水量的增加主要与暴雨日数增加有关。华南地区总雨日数和总降水量减少,总雨日数减少主要与小雨日数减少有关,而总降水量减少是由于各等级降水日数减少引起。  相似文献   

16.
中国东部夏季不同雨带类型的海洋和环流特征差异   总被引:4,自引:1,他引:4  
魏凤英  陈官军  李茜 《气象学报》2012,70(5):1004-1020
利用1951-2009年NCEP/NCAR再分析资料、UKMO HADISST1全球月海表温度及中国东部地区120站的月降水量资料,首先定义出能够客观表征中国东部夏季3种雨带类型的指数,然后分析了3种雨带分布类型海洋和大气环流特征的主要差异,并进一步分析了前期海洋背景的差异特征对夏季东亚环流关键系统的预测蕴示.结果表明:(1)3种雨带类型对应的前期冬季海洋信号比当年夏季强,其差异主要表现在:多雨带出现在北方地区的Ⅰ型对应的是北太平洋海温呈显著的正距平、暖池及东澳暖流为负距平、南太平洋西风漂流区为正距平;多雨带出现在黄淮地区的Ⅱ型对应的海温分布则与Ⅰ型完全相反;多雨带出现在长江及其以南地区的Ⅲ型对应的海温分布在北太平洋海域与Ⅰ型基本一致;(2)3种雨带类型对应的环流及水汽输送特征的差异主要表现在:Ⅲ型与Ⅰ型具有几乎完全相反的环流及水汽输送特征,当出现Ⅲ型时,东亚中高纬度有强盛的阻塞形势发展和维持,中高纬度的经向环流异常加强,同时西太平洋副热带高压偏强,位置偏西、偏南,该地区呈反气旋性距平环流,西太平洋副热带纬向水汽输送加强,而出现Ⅰ型时则相反;Ⅱ型与Ⅰ型的环流及水汽输送特征更接近,两者的主要差异是:当出现Ⅱ型时,西太平洋副热带地区呈反气旋性距平环流,而出现Ⅰ型时该地区呈气旋性距平环流;(3)前期冬季赤道中东太平洋海温和南太平洋西风漂流区的海温异常变化可以作为夏季西太平洋副热带高压预报的重要前兆信号.  相似文献   

17.
华南前汛期开始日期异常与大气环流和海温变化的关系   总被引:4,自引:1,他引:4  
伍红雨  杨崧  蒋兴文 《气象学报》2015,73(2):319-330
利用1961—2012年美国国家环境预报中心/大气研究中心(NCEP/NCAR)的再分析资料、NOAA海温资料,CMAP降水资料和华南261个测站降水观测资料,首先分析华南前汛期开始日期(以下简称华南开汛)异常的气候特征,然后采用相关分析、合成分析的方法研究华南开汛异常与3—4月大气环流以及海温变化的关系。结果表明,近52 a来华南开汛具有显著的年际变化特征,但变化趋势不明显。开汛最早出现在1983年3月1日,最晚出现在1963年6月1日,1961—2012年华南平均开汛日期是4月6日。华南开汛主要出现在3—4月,占92.3%。华南开汛与3—4月华南降水相关最显著,开汛偏早(晚),对应华南3—4月降水偏多(少)。华南开汛偏早年,在3—4月,对流层高层副热带西风急流偏强,中层西太平洋副热带高压偏强偏西、低层南支槽偏强,华南上空西南气流偏强;华南开汛偏晚年则相反。华南开汛与3—4月中国南海及周边地区海温显著相关,海温偏低(高)对应华南开汛偏晚(早)。华南开汛偏晚年的海温和大气环流异常比早年显著。  相似文献   

18.
基于气象台站降水观测资料,本文分析了1960—2016年半干旱区盛夏(7、8月)降水量时空变化特征,探讨了典型降水量时空分布型与大气环流及水汽输送的关系。结果表明,1960—2016年半干旱区7月和8月降水量的主导空间模态均可归纳为“区域一致型”和“区内反向型”。“区域一致型”时间序列显示1960—2016年7、8月降水量均呈减少趋势,但8月减少趋势更明显。这一时间序列与大气环流及水汽通量输送之间相关性分析显示,欧亚遥相关以及中纬度西风气流与7月降水量变化密切相关;而西太平洋副热带高压是影响半干旱区8月降水量变化的主要原因。相较而言,“区内反向型”年际变率较小但年代际变化明显,当北方半干旱区受反气旋性环流控制时,易形成北方半干旱区西部地区降水偏多而东部地区偏少的格局。  相似文献   

19.
利用CAM5.1大气环流模式研究中国东部大规模城市化对东亚夏季大气环流及降水分布的影响。通过在模式中修改中国东部地区(22~42°N,110~125°E)城市比重的方法,探讨东亚地区夏季大气环流与降水等气象要素在一般城市化及极端城市化两种情景下的响应。结果表明:(1)CAM5.1模式能够很好地模拟出东亚地区夏季大气环流形势及降水分布。(2)城市比重增大后,晴空时地面吸收的净辐射增多,近地层气温升高,低层增温中心上空的大气由于受热产生上升运动,35°N以南的气流向增温区辐合,东亚夏季风出现增强的趋势,大量暖湿水汽往北输送,导致降水在中国北方地区增多而南方减少。(3)城市化的发展程度越高,它所产生的气候效应对各气象要素的影响就表现得越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号