首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CNES (Centre National d’Etudes Spatiales) and CLS (Collecte Localisation Satellites) became an International GNSS Service (IGS) Analysis Center (AC) the 20th of May 2010. Since 2009, we are using the integer ambiguity fixing at the zero-difference level strategy in our software package (GINS/Dynamo) as an alternative to classical differential approaches. This method played a key role among all the improvements in the GPS processing we made during this period. This paper provides to the users the theoretical background, the strategies and the models used to compute the products (GPS orbits and clocks, weekly station coordinate estimates and Earth orientation parameters) that are submitted weekly to the IGS. The practical realization of the two-step, ambiguity-fixing scheme (wide-lane and narrow-lane) is described in detail. The ambiguity fixing improved our orbit overlaps from 6 to 3?cm WRMS in the tangential and normal directions. Since 2008, our products have been also regularly compared to the IGS final solutions by the IGS Analysis Center Coordinator. The joint effects of ambiguity fixing and dynamical model changes (satellite solar radiation pressure and albedo force) improved the consistency with IGS orbits from 35 to 18?mm 3D-WRMS. Our innovative strategy also gives additional powerful properties to the GPS satellite phase clock solutions. Single receiver (zero-difference) ambiguity resolution becomes possible. An overview of the applications is given.  相似文献   

2.
利用SLR与伪距资料综合定轨   总被引:2,自引:0,他引:2  
以GPS伪距为观测量对GPS35卫星进行定轨 ,然后将SLR与GPS伪距资料综合起来进行定轨 ,并将计算的轨道与IGS精密轨道进行了比较  相似文献   

3.
Progress in Carrier Phase Time Transfer   总被引:1,自引:0,他引:1  
The progress of the joint Pilot Project for time transfer, formed by the International GPS Service (IGS) and the Bureal International des Poids et Mesures (BIPM), was recently reviewed. Three notable milestones were set. (1) The IGS will implement, at least in a test mode, an internally realized time scale based on an integration of combined frequency standards within the IGS network. This will eventually become the reference time scale for all IGS clock products (instead of the current GPS broadcast time). (2) A new procedure for combined receiver and satellite clock products will be implemented officially in November 2000. Receiver clocks are an entirely new product of the IGS. (3) The BIPM will coordinate an effort to calibrate all Ashtech Z12-T (and possibly other) receivers suitable for time transfer applications, either differentially or absolutely. Progress reports will be presented publicly in the spring 2001. ? 2001 John Wiley & Sons, Inc.  相似文献   

4.
国际GNSS服务(IGS)提供的GPS综合产品被广泛应用于各种高精度科学研究中. 随着各国卫星导航系统的发展,亟需研究针对多系统全球卫星导航系统(GNSS)产品的综合策略. 由于卫星姿态与钟差相互耦合,综合钟差时额外考虑姿态改正将进一步提高综合产品精度,因此研究了一种顾及卫星姿态的GNSS钟差综合策略,改正姿态后GPS综合残差最大可减小80%. 对142个IGS测站进行精密单点定位(PPP)解算发现,综合产品比单个分析中心产品更加稳定,东(E)、北(N)、高(U)方向的动态定位精度最大可提升22.7%、16.7%和18.3%. 相对于未顾及姿态改正的综合产品,顾及姿态改正的综合产品的动态定位精度最大可提升65.3%.   相似文献   

5.
Use of IGS products in TAI applications   总被引:1,自引:0,他引:1  
The Bureau International des Poids et Mesures (BIPM) is in charge of producing International Atomic Time TAI. In this aim, it uses clock data from more than 60 laboratories spread worldwide. For two decades, GPS has been an essential tool to link these clocks, and products from the International GNSS Service (IGS) have been used to improve the quality of these time links since its creation in the early 1990s. This paper reviews the various interactions between the IGS and time activities at the BIPM, and shows that TAI has greatly benefited from IGS products so that their availability is now an essential need for the quality of TAI links. On the other hand, IGS has also benefited from introducing time laboratories equipped with highly stable clocks in its network of stations. In the future, similar products will be needed for an ensemble of satellite systems, starting with GLONASS and GALILEO. It will be a major challenge to the IGS to obtain a consistent set of products, particularly for what concerns satellite clocks and inter-system bias values.  相似文献   

6.
施闯  辜声峰  楼益栋  郑福  宋伟  张东  毛飞宇 《测绘学报》2022,51(7):1206-1214
广域实时精密定位与时间服务已成为GNSS应用领域研究热点,目前国内外学者围绕其模型算法已展开大量的研究。本文重点论述广域实时精密定位与时间服务数据的处理方法和服务系统,给出了基于不同基准约束的卫星钟差解算数学模型,提出通过引入外接原子钟测站、标准时间源(UTC/BDT)等不同时间基准,构建卫星拟稳基准、外接原子钟跟踪站拟稳基准及标准时间源等约束下的钟差解算模型,分析了时间基准对精密单点定位和精密单点授时的影响。本文采用实时卫星轨道、钟差、相位偏差、电离层延迟等服务产品及跟踪站实时数据,验证了系统产品可靠性及终端定位与时间服务性能。实测结果表明:GPS轨道径向精度1.8 cm,钟差STD精度约0.05 ns;BDS-3轨道径向精度6.7 cm,钟差STD精度优于0.1 ns;GPS和BDS-2电离层改正精度分别为0.74 TECU与1.03 TECU。基于该产品实现了用户端PPP、PPP-RTK及PPT、PPT-RTK服务,满足了用户实时厘米级定位和优于0.5 ns的单站时间传递服务,当采用GPS+BDS-2 PPP-RTK解算时,平面收敛至5 cm约需要12 min。  相似文献   

7.
Improved relativistic transformations in GPS   总被引:1,自引:1,他引:0  
For GPS satellite clocks, a nominal (hardware) frequency offset and a conventional periodic relativistic correction derived as a dot product of the satellite position and velocity vectors, are used to compensate the relativistic effects. The conventional hardware clock rate offset of 38,575.008 ns/day corresponds to a nominal orbit semi-major axis of about 26,561,400 m. For some of the GPS satellites, the departures from the nominal semi-major axis can cause an apparent clock rate up to 10 ns/day. GPS orbit perturbations, together with the earth gravity field oblateness, which is largely responsible for the orbit perturbations, cause the standard GPS relativistic transformations to depart from the rigorous relativity transformation by up to 0.2 ns/day. In addition, the conventional periodic relativistic correction exhibits periodic errors with amplitudes of about 0.1 and 0.2 ns, with periods of about 6 h and 14 days, respectively. Using an analytical integration of the gravity oblateness term (J2), a simple analytical approximation was derived for the apparent clock rate and the 6-h periodic errors of the standard GPS gravity correction. For daily linear representations of GPS satellite clocks, the improved relativistic formula was found to agree with the precise numerical integration of the GPS relativistic effects within about 0.015 ns. For most of the Block IIR satellites, the 6-h periodical errors of the GPS conventional relativistic correction are already detectable in the recent IGS final clock combinations.  相似文献   

8.
Different types of GPS clock and orbit data provided by the International GPS Service (IGS) have been used to assess the accuracy of rapid orbit determination for satellites in low Earth orbit (LEO) using spaceborne GPS measurements. To avoid the need for reference measurements from ground-based reference receivers, the analysis is based on an undifferenced processing of GPS code and carrier-phase measurements. Special attention is therefore given to the quality of GPS clock data that directly affects the resulting orbit determination accuracy. Interpolation of clock data from the available 15 min grid points is identified as a limiting factor in the use of IGS ultra-rapid ephemerides. Despite this restriction, a 10-cm orbit determination accuracy can be obtained with these products data as demonstrated for the GRACE-B spacecraft during selected data arcs between 2002 and 2004. This performance may be compared with a 5-cm orbit determination accuracy achievable with IGS rapid and final products using 5 min clock samples. For improved accuracy, high-rate (30 s) clock solutions are recommended that are presently only available from individual IGS centers. Likewise, a reduced latency and more frequent updates of IGS ultra-rapid ephemerides are desirable to meet the requirements of upcoming satellite missions for near real-time and precise orbit determination.  相似文献   

9.
Since Selective Availability was permanently switched off on 7 May 2000, most of the GPS satellite clocks have been well behaved. During a 24-h period precise satellite clock solutions, corrected for GPS conventional relativistic corrections, follow straight lines within a few nanoseconds. The linear clock fit RMS for the best satellite clocks are well below the 1-ns level, which is consistent with the nominal stability of the GPS frequency standards. Typically, the GPS satellite clocks show an Allan variance at or below one part in 1011/100 s for the Cesium frequency standards and a few parts in 1012/100 s for the Rubidium frequency standards. These results correspond to clock RMSs for 15-min sampling at or below 3 and 0.3 ns, respectively. This already confirms experimentally that the conventional periodic relativity correction of the GPS system, also adopted for all the IGS clock solution products, is precise and correct to 0.6 ns or better. To establish the precision limits of the GPS conventional relativity treatment, the relativistic time transformations of GPS satellite frequency and clocks are critically reviewed, taking into account all the contributions larger than the 10−18 (or 0.001 ns). The conventional GPS relativity treatment was found to be accurate, i. e., correctly modeling the actual relativistic frequency (clock rate) effects of GPS satellites at about the 10−14 level. However, it is also affected by small periodic errors of the same magnitude. The integration of these small periodic frequency relativistic errors gives the approximation errors of the conventional periodic relativistic clock correction with amplitudes of about 0.1 ns and a predominant period equal to a half of the orbital period (∼ 6 h). These approximation errors of the conventional GPS relativistic clock correction are at about the same level as the current precision of the IGS clock solutions. ? 2002 Wiley Periodicals, Inc.  相似文献   

10.
基于广播星历的单站载波相位授时算法   总被引:1,自引:0,他引:1  
针对传统单站授时算法的局限性,提出了一种基于广播星历的单站载波相位授时算法。该算法在标准单点定位授时算法仅采用伪距观测量的基础上,增加了载波相位观测量,授时精度得到了显著改善;该算法与精密单点定位授时算法相比,不需要精密轨道和钟差,摆脱了IGS等外部事后精密星历产品的依赖,能够广泛应用于实时授时。并利用IGS站观测数据进行实验分析,结果表明,单站载波相位授时精度明显优于标准单点定位授时算法,授时精度可达1~2 ns。  相似文献   

11.
从均方根信息滤波和平滑的基本原理出发.结合卫星定轨的实际特征.导出了其在精密定轨软件中实现的详细公式;针对均方根滤波的特点,提出了快速高效地探测和修复GPS观测数据中周跳的新方法。利用实测星载GPS数据验证了基于均方根滤波的质量控制算法的可靠性.得到了有益的结果。  相似文献   

12.
The International Atomic Time scale (TAI) is computed by the Bureau International des Poids et Mesures (BIPM) from a set of atomic clocks distributed in about 40 time laboratories around the world. The time transfer between these remote clocks is mostly performed by the so-called GPS common view method: The clocks are connected to a GPS time receiver whose internal software computes the offsets between the remote clocks and GPS time. These data are collected in a standard formal called CCTF. In the present study we develop both the procedure and the software tool that allows us to generate the CCTF files needed for time transfer to TAI, using RINEX files produced by geodetic receivers driven by an external frequency. The CCTF files are then generated from the RINEX observation files. The software is freely available at ftp://omaftp.oma.be/dist/astro/time/RINEX_CCTF. Applied to IGS (International GPS Service) receivers, this procedure will provide a direct link between TAI and the IGS clock combination. We demonstrate here the procedure using the RINEX files from the Ashtech Metronome (ZXII-T) GPS receiver, to which we apply the conventional analysis to compute the CCTF data. We compared these results with the CCTF files produced by a time receiver R100-30T from 3S-Navigation. We also used this comparison with the results of a calibrated time receiver to determine the hardware delay of the geodetic receiver. ? 2001 John Wiley & Sons, Inc.  相似文献   

13.
曾添  隋立芬  阮仁桂  贾小林  冯来平 《测绘学报》1957,49(10):1275-1284
随着全球卫星导航系统的发展,GNSS卫星发播多频观测量已成必然趋势。然而,目前IGS分析中心依然使用双频观测量的策略进行轨道、钟差等产品的解算,并没有顾及额外频点观测量对定轨产品带来的效益。本文使用两个双频无电离层组合(IF)作为观测模型,研究第三频点观测量对轨道、钟差及测站位置精度的改善。在观测方程中将卫星端的相位偏差分成时变和时不变分量,通过对两个IF组合的观测方程进行参数重组,推导了与IGS钟差产品基准一致的满秩观测模型。基于超宽巷、宽巷和窄巷双差模糊度构建策略,给出了三频观测量的模糊度固定方法。首先以12颗GPS Block IIF卫星为例,在两种测站布局情况下进行L1/L2 IF双频定轨(S1)、L1/L5 IF双频定轨(S2)、L1/L2和L1/L5两个IF组合的三频定轨(S3)试验。结果表明S3方案最优,测站均匀、不均匀情况下轨道结果S3相较S1分别改善10%以内、10%左右,钟差的RMS略有改善,STD分别改善6.4%、10.0%,而S3相较S2的改善幅度更小,改善百分比基本在5%以内。随后进行了BDS单系统定轨,并使用激光检核轨道,表明三频定轨较B1/B3定轨结果改善显著,但是较B1/B2方案结果改善微弱,可能的原因是天线相位中心误差改正值不准确。  相似文献   

14.
Precise orbit determination of BeiDou constellation: method comparison   总被引:3,自引:1,他引:2  
Chinese BeiDou navigation satellite system is in official service as a regional constellation with five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites and four medium earth orbit (MEO) satellites. There are mainly two methods for precise orbit determination of the BeiDou constellation found in the current literatures. One is the independent single-system method, where only BeiDou observations are used without help from other GNSS systems. The other is the two-step GPS-assisted method where in the first step, GPS data are used to resolve some common parameters, such as station coordinates, receiver clocks and zenith tropospheric delay parameters, which are then introduced as known quantities in BeiDou processing in the second step. We conduct a thorough performance comparison between the two methods. Observations from the BeiDou experimental tracking stations and the IGS Multi-GNSS Experiment network from January 1 to March 31, 2013, are processed with the Positioning and Navigation Data Analyst (PANDA) software. The results show that for BeiDou IGSO and MEO satellites, the two-step GPS-assisted method outperforms the independent single-system method in both internal orbit overlap precision and external satellite laser ranging validation. For BeiDou GEO satellites, the two methods show close performances. Zenith tropospheric delays estimated from the first method are very close to those estimated from GPS precise point positioning in the second method, with differences of several millimeters. Satellite clock estimates from the two methods show similar performances when assessing the stability of the BeiDou on board clocks.  相似文献   

15.
高性能原子钟钟差建模及其在精密单点定位中的应用   总被引:2,自引:2,他引:0  
张小红  陈兴汉  郭斐 《测绘学报》2015,44(4):392-398
鉴于当前许多IGS跟踪站均配置有高性能原子钟的现状,本文首先采用修正Allan方差法分析了不同IGS跟踪站的接收机钟随机噪声的时域特性,进而评估了不同类型接收机的短期稳定度及钟差建模的可行性,然后利用IGS站配有氢原子钟的观测数据,在精密单点定位算法中,通过对钟差参数进行短时建模约束接收机钟差的随机变化,进而改进精密单点定位(PPP)的定位性能。试验结果表明钟差建模方法显著降低了高程分量参数、天顶对流层延迟参数与接收机钟差参数之间的相关性,GNSS高程分量的精度可提高50%。该方法对于提升PPP技术在地壳形变监测、低轨卫星定轨、水汽监测及预报等高精度GNSS地学领域的应用水平具有一定意义。  相似文献   

16.
Recent studies have shown the capabilities of Global Positioning System (GPS) carrier phases for frequency transfer based on the observations from geodetic GPS receivers driven by stable atomic clocks. This kind of receiver configuration is the kind primarily used within the framework of the International GPS Service (IGS). The International GPS Service/Bureau International des Poids et Mesures (IGS/BIPM) pilot project aims at taking advantage of these GPS receivers to enlarge the network of Time Laboratories contributing to the realization of the International Atomic Time (TAI). In this article, we outline the theory necessary to describe the abilities and limitations of time and frequency transfer using the GPS code and carrier phase observations. We report on several onsite tests and evaluate the present setup of our 12-channel IGS receiver (BRUS), which uses a hydrogen maser as an external frequency reference, to contribute to the IGS/BIPM pilot project. In the initial experimental setup, the receivers had a common external frequency reference; in the second setup, separate external frequency references were used. Independent external clock monitoring provided the necessary information to validate the results. Using two receivers with a common frequency reference and connected to the same antenna, a zero baseline, we were able to use the carrier phase data to derive a frequency stability of 6 × 10−16 for averaging times of one day. The main limitation in the technique originates from small ambient temperature variations of a few degrees Celsius. While these temperature variations have no effect on the functioning of the GPS receiver within the IGS network, they reduce the capacities of the frequency transfer results based on the carrier phase data. We demonstrate that the synchronization offset at the initial measurement epoch can be estimated from a combined use of the code and carrier phase observations. In our test, the discontinuity between two consecutive days was about 140 ps. ? 1999 John Wiley & Sons, Inc.  相似文献   

17.
星载原子钟作为导航卫星上维持时间尺度的关键载荷,其性能会对用户进行导航、定位与授时的精度带来影响。介绍了原子钟评估常用的三个指标(频率准确度、飘移率和稳定度)的定义及计算方法,利用事后卫星精密钟差数据,开展了全球卫星导航系统(global navigation satellite system,GNSS)星载原子钟性能评估,分析了GNSS星载原子钟特性。结果表明,GPS(global position system)BLOCKIIF星载铷钟与Galileo星载氢钟综合性能最优;北斗系统中地球轨道卫星与倾斜同步轨道卫星星载原子钟天稳定度达到2~4×10-14量级,与BLOCK IIR卫星精度相当;频率准确度达到1~4×10-11量级;频率漂移率达到10-14量级。  相似文献   

18.
Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite   总被引:7,自引:4,他引:3  
The Block IIF satellites feature a new generation of high-quality rubidium clocks for time and frequency keeping and are the first GPS satellites transmitting operational navigation signals on three distinct frequencies. We investigate apparent clock offset variations for the Block IIF-1 (SVN62) spacecraft that have been identified in L1/L2 clock solutions as well as the L1/L5-minus-L1/L2 clock difference. With peak-to-peak amplitudes of 10?C40?cm, these variations are of relevance for future precision point positioning applications and ionospheric analyses. A proper characterization and understanding is required to fully benefit from the quality of the new signals and clocks. The analysis covers a period of 8?months following the routine payload activation and is based on GPS orbit and clock products generated by the CODE analysis center of the International GNSS Service (IGS) as well as triple-frequency observations collected with the CONGO network. Based on a harmonic analysis, empirical models are presented that describe the sub-daily variation of the clock offset and the inter-frequency clock difference. These contribute to a better clock predictability at timescales of several hours and enable a consistent use of L1/L2 clock products in L1/L5-based positioning.  相似文献   

19.
实时GPS精密单点定位需要实时的卫星轨道和钟差产品,为此提出一种利用区域GPS连续运行参考站和IGS发布的IGU超快轨道进行实时精密单点定位的方法.该方法首先利用连续运行参考站观测数据与IGU超快轨道预报部分进行实时GPS卫星钟差的估计,然后利用估计得到的实时GPS卫星钟差产品和IGU超快轨道预报部分,进行用户GPS接...  相似文献   

20.
Precise Point Positioning Using IGS Orbit and Clock Products   总被引:40,自引:11,他引:40  
The contribution details a post-processing approach that used undifferentiated dual-frequency pseudorange and carrier phase observations along with IGS procise orbit products, for stand-alone precise geodetic point positioning (static or kinematic) with cm precision. This is possible if one takes advantage of the satellite clock estimates available with the satellite coordinates in the IGS precise orbit products and models systematic effects that cause cm variations in the satelite to user range. This paper will describe the approach, summarize the adjustment procedure, and specify the earth- and space-based models that must be implementetd to achieve cm-level positioning in static mode. Furthermore, station tropospheric zenth path delays with cm precision and GPS receiver clock estimates procise to 0.1 ns are also obtained. ? 2001 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号