共查询到20条相似文献,搜索用时 15 毫秒
1.
太行山迎风坡降水云微物理结构数值模拟分析 总被引:4,自引:2,他引:4
利用MM5模式对太行山迎风坡暴雨过程进行了数值模拟,分析了太行山迎风坡降水的微物理结构特征及山脉对降水的影响。结果表明,降水过程既有太行山地形作用造成的暖云降水又包含汽、水、冰混合的冷云降水,当冰相粒子与液态水的中心上下接近垂直时,1 h降水量最大;地形对于降水增幅作用较大,低层东风遇太行山阻挡辐合抬升形成地形雨;地形造成的弱垂直运动将影响高层上升强度,进而改变水汽分布,并通过微物理过程使得水汽发生相变,该个例中垂直上升运动使得雪和霰相粒子迅速增长,从而导致雨滴增大并克服重力作用下降,在下落过程中捕获低层地形云中水滴变成更大雨滴降落;而在上升过程中水汽凝结释放潜热,对物理量场有一个反馈作用。 相似文献
2.
Prof. K. N. Liou J. L. Lee S. C. Ou Q. Fu Y. Takano 《Meteorology and Atmospheric Physics》1991,46(1-2):41-50
Summary Parameterization programs for cloud microphyscs and radiative transfer involving ice clouds have been developed in terms of the mean effective size and ice water path. The mean effective size appears to be adequate in representing the ice crystal size distribution for radiative parameterizations. For a given ice water path, smaller mean effective sizes reflect more solar radiation, emit more IR radiation and enhance net radiative heating/cooling at the cloud top and bottom than larger sizes. The presence of small ice crystals may generate steeper lapse rates in clouds. A 3-D global cloud model that prescribes the horizontal wind fields in a 24 hour period is used to investigate the sensitivity of the mean effective size of ice crystals on the simulation of radiative heating, temperature, cloud cover and ice water content. A variation in the mean effective size from 75 to 50 m in a 24 hour prediction on simulation generates more cooling above the high cloud top and a decrease of temperature. These results lead to an increase of high cloud cover in some latitudes by as much as 4% and, at the same time, a decrease of middle cloud cover by 3–4% in latitudes between 60°S and 60°N.With 7 Figures 相似文献
3.
Two-moment bulk stratiform cloud microphysics in the grid-point atmospheric model of IAP LASG (GAMIL) 总被引:1,自引:0,他引:1
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model’s capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account. 相似文献
4.
Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilating cloud observations. In addition, the background error covariance matrix of hydrometeors is modeled through a control variable transform, and its characteristics discussed in detail. A suite of experiments using four microphysics schemes (LIN, SBU-YLIN, WDM6 and WSM6) are performed with and without assimilating satellite cloud liquid/ice water path. We find analysis of hydrometeors with cloud assimilation to be significantly improved, and the increment and distribution of hydrometeors are consistent with the characteristics of background error covariance. Diagnostic results suggest that the forecast with cloud assimilation represents a significant improvement, especially the ability to forecast precipitation in the first seven hours. It is also found that the largest improvement occurs in the experiment using the WDM6 scheme, since the assimilated cloud information can sustain for longer in this scheme. The least improvement, meanwhile, appears in the experiment using the SBU-YLIN scheme. 相似文献
5.
利用2009年5月8日多普勒雷达资料和飞机穿云观测资料,综合分析了西风槽影响下山西省一次积层混合云的形成过程和微物理结构。结果表明,此次飞机探测到的积层混合云是由对流单体多次并合形成的带状对流云团减弱后形成的,云中嵌有明显的对流泡,最大强度为45~50dBZ,最大垂直尺度在6km左右。CDP(cloud droplet probe,前向散射粒子谱探头)、CIP(cloud ima-ging probe,二维灰度云粒子探头)、PIP(precipitation imaging probe,二维灰度降水粒子探头)测量的平均数浓度变化范围分别是132.4~220.2cm-3、1.54×10-1~6.28×100cm-3、9.09×10-4~7.34×10-3cm-3。二维图像表明,冷层中的固态粒子主要是形状不规则的霰粒子,说明过冷水供应充足;在-7℃左右观测到柱状聚合体和凇附程度不同的冰雪晶粒子,表明柱状冰晶通过凝华形成后,碰并和凇附是其增长为霰粒子的重要机制。不同高度的CDP平均谱(2~50μm)存在一定的差异,因低层水汽凝结作用较强,2~18μm的云粒子数浓度基本随高度的增加而降低;因暖层中碰并效率低和冷层中小冰晶浓度随高度增加,24~35μm粒子数浓度随高度增加而增大。CIP平均谱(25~1550μm),除4100m为双峰谱外,其他高度均为单峰谱。PIP平均谱(100~6200μm),4450m高度处的粒子谱宽和数浓度最大,3200~4000μm之间出现大值区域,表明对流单体及周边区域为较大固态降水粒子的形成提供了良好的环境。 相似文献
6.
Kinematics, cloud microphysics and spatial structures of tropical cloud clusters: A two-dimensional cloud-resolving modeling study 总被引:3,自引:1,他引:3
Kinematics, cloud microphysics and spatial structures of tropical cloud clusters are investigated using hourly outputs from a two-dimensional cloud-resolving model simulation. The model is forced by the large-scale vertical velocity, zonal wind and horizontal advections obtained from Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). A period of 1600–2300 LST 21 December 1992 is selected for this study when the zonal-mean westerly winds in the lower troposphere intensify while the zonal-mean easterly winds above weaken. Under the vertical-shear environment, there are a westward-propagating cloud cluster, a newly-formed cloud cluster, and four eastward-moving cloud clusters. Two weak eastward-moving cloud clusters merge into strong westward-moving cloud clusters. Merged clouds display notable growth in the eastern edge, indicating that merging processes enhance convection. The development of the new cloud at the western edge of the existing cloud cluster before merging may account for the westward propagation of cloud cluster group, while the advection of the maximum total hydrometeor mixing ratio by the westerly winds after merging may cause the eastward propagation of individual cloud clusters. 相似文献
7.
Broadband solar irradiance data obtained in the spectral range 400–940 nm at Kwangju, South Korea from 1999–2000 have been analyzed to investigate the effects of cloud cover and atmospheric optical depth on solar radiation components. Results from measurements indicate that the percentage of direct and diffuse horizontal components of solar irradiance depend largely on total optical depth (TOD) and cloud cover. During summer and spring, the percentages of diffuse solar irradiance relative to the global irradiance were 5.0% and 4.9% as compared to 2.2% and 3.0% during winter and autumn. The diffuse solar irradiance is higher than the direct in spring and summer by 24.2%, and 40.6%, respectively, which may largely be attributed to the attenuation (scattering) of radiation by heavy dust pollution and large cloud amount. In cloud-free conditions with cloud cover ≤2/10, the fraction of the direct and diffuse components were 66.0% and 34.0%, respectively, with a mean daily global irradiance value of 7.92±2.91 MJ m−2 day−1. However, under cloudy conditions (with cloud cover ≥8/10), the diffuse and direct fractions were 97.9% and 2.2% of the global component, respectively. The annual mean TOD under cloudless conditions (cloud cover≤2/10) yields 0.74±0.33 and increased to as much as 3.15±0.67 under cloudy conditions with cloud amount ≥8/10. An empirical formula is derived for estimating the diffuse and direct components of horizontal solar irradiance by considering the total atmospheric optical depth (TOD). Results from statistical models are shown for the estimation of solar irradiance components as a function of TOD with sufficient accuracy as indicated by low standard error for each solar zenith angle (SZA). 相似文献
8.
9.
Fei Wang Yijun Zhang Dong Zheng Liangtao Xu Wenjuan Zhang Qing Meng 《Acta Meteorologica Sinica》2017,31(5):976-986
A three-dimensional charge–discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge–discharge model is available. The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (Wcell-max), with the adjusted regression coefficient R2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (zini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relationship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites. 相似文献
10.
Kajsa Parding Jan Asle Olseth Beate G. Liepert Knut-Frode Dagestad 《Theoretical and Applied Climatology》2016,125(3-4):625-639
In a previous paper, we have shown that long-term cloud and solar observations (1965–2013) in Bergen, Norway (60.39°N, 5.33°E) are compatible with a largely cloud dominated radiative climate. Here, we explicitly address the relationship between the large scale circulation over Europe and local conditions in Bergen, identifying specific circulation shifts that have contributed to the observed cloud and solar variations. As a measure of synoptic weather patterns, we use the Grosswetterlagen (GWL), a daily classification of European weather for 1881–2013. Empirical models of cloud cover, cloud base, relative sunshine duration, and normalised global irradiance are constructed based on the GWL frequencies, extending the observational time series by more than 70 years. The GWL models successfully reproduce the observed increase in cloud cover and decrease in solar irradiance during the 1970s and 1980s. This cloud-induced dimming is traced to an increasing frequency of cyclonic and decreasing frequency of anticyclonic weather patterns over northern Europe. The changing circulation patterns in winter can be understood as a shift from the negative to the positive phase of the North Atlantic and Arctic Oscillation. A recent period of increasing solar irradiance is observed but not reproduce by the GWL models, suggesting this brightening is associated with factors other than large scale atmospheric circulation, possibly decreasing aerosol loads and local cloud shifts. 相似文献
11.
A new cloud microphysical parameterization is described. Features of this new scheme include: the use of generalized gamma distributions as the basis function for all hydrometeor species; the use of a heat budget equation for hydrometeor classes, allowing heat storage and mixed phase hydrometeors; partitioning hydrometeors into seven classes (including separate graupel and hail categories); the use of stochastic collection rather than continuous accretion approximations and extension of the ice nucleation scheme to include homogeneous nucleation of ice from haze particles and cloud droplets.The versatility and credibility of the new scheme is explored, using sensitivity experiments for a simple two-dimensional convective cloud simulation. 相似文献
12.
基于WRFV3.6.1,利用其8个云微物理参数化方案对2010—2016年华南汛期(4—9月)的6个南风型暖区暴雨个例进行数值模拟与多方案集成试验,并采用基于对象的诊断评估方法(MODE)对模拟结果进行评估。结果发现对于大多数个例,WRF模式都能较好地模拟出暖区暴雨的降水带,对暖区降水带模拟最好的参数化方案是WSM6方案,其次是Lin方案;模拟效果较差的参数化方案为CAM5.1与NSSL 2-mon方案。选取模拟结果较好的个例进行诊断分析,发现不同参数化方案得到的动力学特征以及云微物理特征相关变量存在较大差异,导致模拟降水的差异。在单方案模拟的基础上,开展多方案集成试验,发现多方案集成方法能够有效降低模式模拟的不确定性,产生更稳定的模拟结果。 相似文献
13.
Reliable cloud microphysical measurements can lead to a better understanding of the development of precipitation and cloud radiation. However, imaging of cloud particles with sizes < 200 μm has been limited to small (collected) samples of high-quality photographs or large quantities of poor-quality digital images. Here we introduce two new instruments with demonstrated abilities for improved measurements of cloud drop spectra, liquid water content and digital imaging of the size and shape of small ice crystals. The first instrument uses digital holography to increase the sample volume over that possible with in-focus imaging of small particles. The digital holograms can be processed automatically and are expected to reveal the size and shape of small ice crystals, and the three-dimensional concentration, spacing and liquid water content of cloud drops. The second instrument measures cloud drop spectra and liquid water content from high-resolution measurements of forward-scattered light from an ensemble of drops. This eliminates inherent problems of coincidence and the small sample volume associated with single-drop measurements of drops. The theory of measurement and results from tests of both instruments are presented. 相似文献
14.
15.
16.
17.
午后地面气温对对流的发生发展具有重要作用,对其准确预报一直是中尺度数值模式的基本要求。针对一次冷云过程,本文基于WRFv3.9.1模式评估了5种云微物理参数化方案对华东地区地面气温的模拟效果。结果表明,各方案模拟的午后及午夜地面气温都存在较大偏差。其中,WDM6方案对地面气温模拟的效果最佳,Thompson方案模拟的云冰含量过低,模拟效果最差。因此对WDM6方案进行进一步评估和改进,通过修改冰核浓度、初始云凝结核数、优化WDM6方案以及替换方案中云水向雨水自动转化过程的公式的方式设计了敏感性试验,以改进WDM6方案对地面气温的模拟。结果表明,使用Grabowski公式替换WDM6方案中的Berry公式,能提高云水含量,有效改善地面气温的模拟。并通过一次梅雨过程对改进方案进行了有效性验证。最后在此基础上将改进后的WDM6方案应用于江苏省精细化天气分析和预报系统PWAFS模式中,显著提高了PWAFS模式对午后地面气温的模拟效果,为模式的业务应用提供了技术支撑。 相似文献
18.
对流参数化与微物理过程的耦合及其对台风预报的影响研究 总被引:6,自引:2,他引:6
在SAS(Relaxed Arakawa-schubert Scheme)对流参数化方案中引入对流云和层状云的相互耦合机制,并通过一个台风个例对改进前后两种方案的预报效果进行了比较。试验结果表明:对于台风这种对流云和层状云相互作用非常强烈的天气系统,在对流参数化方案中引入对流云和层状云的耦合机制可以有效地提高模式对台风路径的预报水平,但是对于台风强度的预报效果不明显。考虑对流参数化和微物理过程耦合后模式的参数化降水变弱而格点降水增强,与NCEP再分析资料的对比发现,改进方案对于台风外围的大尺度温度场和湿度场的预报会有所改进,但仍然存在偏干偏冷的现象。对雨和雪的不同处理方式、不同云底条件以及是否考虑雨雪的卷入抬升三个方面进行了敏感性试验,发现72 h内模式预报结果对这些因素的差异不是很敏感。从多个个例的统计结果来看,新方案对台风路径预报的改进效果是比较稳定的。 相似文献
19.
一次梅雨锋暴雨云物理特征的数值模拟研究 总被引:3,自引:1,他引:3
利用中尺度数值模式MM5(V3.6),选用模式中不同的显式云物理方案,对2003年7月4—5日发生在江淮流域的梅雨锋暴雨过程进行了数值模拟,并根据模拟结果对造成此次暴雨过程的对流云团的微物理特征进行了分析。研究结果表明:(1)具有详细云物理过程的中尺度模式MM5对短时强降水过程具有较好的模拟能力,提高MM5模式的分辨率,可以更好地模拟短时梅雨锋暴雨过程,模式中的Goddard云物理方案的模拟结果要优于Reisner方案和Schultz方案。(2)梅雨锋对流云团是一种复杂的固、液、气三相混合体结构,在云体区域内的平均质量密度分布中,水汽的质量密度最大,其次是霰,而冰晶、雪、云水和雨水的质量密度较小且数值大小彼此接近,各种相态粒子质量密度峰值出现的高度随时间无明显变化。雨水、云冰和霰的质量密度随时间演变规律与地面降水强度的变化特征相一致,近地面层水汽密度随时间的演变规律比地面降水强度提前1—2个小时,水汽通量的辐合对暴雨时段内水汽的补充和维持起到了重要的作用。(3)除了最基本的云水向雨水转化的云微物理过程之外,此次降水过程还显示,在中层500—700 hPa范围内雪、冰晶等冰相粒子首先转化为霰粒子,而霰和云水的结合进一步加速(剧)云水向雨水的转换,成为短时特大暴雨形成不可或缺的动力机制,云物理过程中的相变潜热与对流运动的正反馈机制是促进暴雨维持和发展的最重要热力因子。 相似文献
20.