首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
介绍了云南天文台和北京天文台频谱仪所观测到具有正、负频漂的米波Ⅲ型爆发和微波尖峰辐射.对双向电子束源的频率和高度进行了估计.2个事件都表明在具有正、负频漂率的爆发之间有一分界频率(250和2900MHz),这说明爆发源是一个复杂加速源,电子束同时向上、下2个方向注入.由本文的2个事例可以说明1.双向电子束的转换(changeover)范围是在250~2900MHz的宽频带里,并且起源是在很小范围(4~70MHz)内.这些电子束从高层到低层日冕都有一个很窄的独立加速区,文中的Ⅲ型爆发对可能是它们的等离子体辐射现象.2.在低日冕分离开放磁场和闭合磁场的电流片,以及高日冕相反方向的开放磁力线的交叉区域可能都是双向电子加速区.从闭合磁场到开放磁场的磁拓扑范围将是很大的(大约在光球上2×104km到10.7×104km).  相似文献   

2.
分析了云南天文台声光频谱仪在22周峰年期间观测到的6个具有双向频率漂移的米波Ⅲ型爆发对。这些事件分别揭示了在正向和反向漂称爆发之间的界面频率在244-272MHz之间;频率漂移率在32-198MHz/s之间;寿命为1.1-3.4s;带宽在43-70MHz之间;与Hα8耀斑相关为100%,其中33%的爆发发生在Hα耀斑的初始时刻,这说明它们与磁重联初始能量释放有关;50%的爆发与X射线对应。从观测特征出发,讨论了它们可能的辐射机制。  相似文献   

3.
位于日冕微波区的微波Ⅲ型爆发界面频率的发现   总被引:3,自引:0,他引:3  
在北京天台1.0-2.0GHz射电频谱仪记录到的1994年1月5日爆发图上,首次发现一界面频率位于1240MHz与1340MHz之间的微波Ⅲ型爆发对,其频率漂率为-0.22GHz/s和+0.23GHz/s由此推出电子加速区位于光球之上,3.7×10^4km的高度,电子加速区及Ⅲ型爆发形成区的高度范围约为1000公里,而电子束的速度相应为0.102c及0.106c。  相似文献   

4.
分析了国家天文台云南天文台射电频谱仪在230~300MHz、625~1500MHz、1000~2000MHz和2600~3800MHz记录到的11对具有双向漂移结构的Ⅲ型爆发.对双向Ⅲ型爆发的半功率持续时间、频率漂移率、偏振度等观测特征与普通Ⅲ型爆发作了比较,与Hα耀斑的关系也作了详细分析.得到这些事件的显著特征,并对双向Ⅲ型爆发作了定性解释.  相似文献   

5.
综述云南天文台在太阳活动22周峰年期间观测到的米波射电频谱资料,和在处理资料时 一些共生毫秒级Spike的Ⅲ型爆发,它们的不同形态提示了Ⅲ型爆发和毫秒级Spike的发生关系。通过两个典型事件的分析,根据Spike和Ⅲ型爆发出现的 时序以及形态的连续和转换特性,证实了日冕电子加速区位于毫秒级Spike爆发和Ⅲ型爆发的源区之上,由观测指出Ⅲ型爆发对应的界面频率是位于250MHz附近,并试图用等离子假设  相似文献   

6.
分析了云南天文台声光频谱仪在22周峰年期间观测到的6个具有双向频率漂移的米波Ⅲ型爆发对.这些事件分别揭示了在正向和反向漂移爆发之间的界面频率在244~272 MHz之间;频率漂移率在32~198 MHz/s之间;寿命为1.1~3.4s;带宽在43~70 MHz之间;与Hα耀斑相关为100%,其中33%的爆发发生在Hα耀斑的初始时刻,这说明它们与磁重联初始能量释放有关;50%的爆发与X射线对应.从观测特征出发,讨论了它们可能的辐射机制.  相似文献   

7.
分析了1993-10-02 0739.5-0745.0UT在2.840GHz-2.545GHz观测到的一次太阳射射电爆发事件,证认了这次爆发的一部分是微波类Ⅲ型爆发。计算结果表明,这次Ⅲ型爆发是由速度为1.0×10^8m/s的相对论性电子束所引起的,产生电子束的源区背景温度为T-3×10^7K,射电爆发亮温度Tb=10612K,爆发源区的悄度L-3.4×10^2km。  相似文献   

8.
微波Ⅲ型爆发的统计分析   总被引:1,自引:1,他引:0  
摘要:本文统计分析了国家天文台5.2~7.6GHz频段高时间分辨率频谱仪23周太阳活动峰年期间(1999.8~2002.1)观测到的87个Ⅲ型爆发,对这些事件的频率漂移、半功率持续时间、带宽和偏振及相关事件作了详细分析。认为这些Ⅲ型爆发可能是由非热电子束引起的谐波等离子体辐射和电子回旋脉泽辐射而产生。  相似文献   

9.
在北京天文台1.0-2.0GHz射电频谱仪记录到的1994年1月5日爆发图上,首次发现一界面频率位于1240MHz与1340MHz之间的微波II型爆发对,其频漂率为-0.22GHz/s和+0.23GHz/s.由此推出电子加速区位于光球之上3.7×104km的高度,电子加速区及II型爆发形成区的高度范围约为1000公里,而电子束的速度相应为0.102c及0.106c.  相似文献   

10.
微波组合Ⅲ型爆发是指由低频端的微波普通Ⅲ型爆发和同时出现在高频端的微波连续U型爆发构成的组合体。微波连续U型爆发是单个微波U型爆发在同一磁环中的进一步演化的结果,它仍是Ⅲ型爆发的一个次型,因此整个微波组合Ⅲ型爆发也是Ⅲ型爆发的一个次型。微波组合Ⅲ型爆发的辐射源(即高能电子束)来自同一个加速区,只不过在与低日冕区的磁环相互作用中被分离成捕获电子和逃逸电子束,并有不同的运动轨迹,最终同时辐射产生高频端的微波连续U型爆发和低频端的微波普通Ⅲ型爆发.微波组合Ⅲ型爆发的形成与低日冕区的磁环结构密切相关,因而它是微波段的特有现象。  相似文献   

11.
统计分析了国家天文台2.6-3.8 GHz高时间分辨率射电动态频谱仪在23周峰年期间(1998.4—2003.1)观测到的266个III型爆发.对这些事件的频率漂移、持续时间、偏振、带宽、开始和结束频率做了详细分析.开始和结束频率的统计分析表明,开始频率在一个非常大的范围,从小于2.6 GHz到大于3.8 GHz,而结束频率的截止区相对集中,从2.82-3.76 G.Hz.这些现象说明,电子加速的高度相当分散,在观测频率范围内具有正、负漂移率的III型爆发数基本相等,这可能意味着被加速的向上和向下传播的电子束在2.6—3.8 GHz范围有相同的比例.统计结果表明,微波III型爆发的辐射机制主要是等离子体辐射和电子回旋脉泽辐射过程.  相似文献   

12.
详细介绍了北京天文台2.6-3.8GHz太阳射电频谱仪在1998年4月15日观测到的一群微波Ⅲ型爆发。它们具有宽频带(>100MHz)、短时标(<100ms)、高偏振(100%)、短周期脉动(百毫秒)、内向快速频率漂移(高于1GHz/s)等显著特征。讨论了它的观测特征、时间轮廓和脉动现象,认为该群微波Ⅲ型爆发起源于等离子体基波辐射,阐述了在高频范围Ⅲ型爆发起源于等离子体基波辐射的可能性。  相似文献   

13.
统计分析了太阳22周峰年期间云南天文台声光频谱仪在230—300MHz频率范围,记录到的Ⅲ型爆发和毫秒级快速脉动共存事件。发现有两种不同的脉动现象:(1)普通型脉动;(2)包迹型脉动,并在此基础上对Ⅲ型一脉动共存事件与之对应的光学活动及相关事件,脉动的形态、周期、带宽等观测特征作了分析和讨论。  相似文献   

14.
微波Ⅲ型爆发在1—2GHz太阳射电快速频谱仪上的观测   总被引:1,自引:0,他引:1  
叙述了1997年1月至1998年4月,使用北京天台7m射电望远镜在1-2GHz频率上观测的微波Ⅲ型爆发的分析结果。共分析60个事件,获得了单峰、多峰、群集和负吸收微波Ⅲ型爆发的四种型别。通过对它们的频宽、频漂、偏振等重要参量的分析,初步得出微波Ⅲ型爆发在1-2GHz上的一些基本特性。  相似文献   

15.
本文对太阳射电精细结构这一领域进行了较为详尽深入的调研,发现由于观测仪器技术指标(时间、频率、频率覆盖、偏振、灵敏度等)相对不高,有很多的精细结构,在时间上、在频率上并没有被完全分解开来,或是没有被检测到。对FFS的研究,还处于发现-认识-逐步深化的阶段。观测资料还很单薄。在微波高端(厘米波段),精细结构的观测资料更是很少。另外,对FFS也只是有一个侧重频谱形态的分类。本文利用我国的“太阳射电宽带快速频谱仪”的观测资料,几年来,对微波频段的射电快速精细结构进行了较为深入的研究。主要研究结果有:发现了弱偏振微波尖峰辐射中两个偏振分量之间的时间延迟和偏振反转现象;首次发现了微波(短分米波段)高偏振U型爆发并给出解释;首次发现了厘米波N型和M型爆发并给出解释;首次发现了高偏振微波斑点并给出解释;首次利用甚高频率分辨率频谱仪,通过对大样本的分米波尖峰辐射的统计,给出了更为可靠的、更小的相对带宽的下限;结合高空间分辨率的观测资料,对运动Ⅳ型爆发及其伴生的精细结构作了探讨;对双向电子束的起源及其加速位置进行了研究。  相似文献   

16.
叙述了1997年1月至1998年4月,使用北京天文台7m射电望远镜在1-2GHz频率上观测的微波Ⅲ型爆发的分析结果.共分析60个事件,获得了单峰、多峰、群集和负吸收微波Ⅲ型爆发的四种型别.通过对它们的频宽、频漂、偏振等重要参量的分析,初步得出微波Ⅲ型爆发在1-2GHz上的一些基本特性.  相似文献   

17.
分析了1993-10-020739.5-0745.0UT在2.840GHz-2.545GHz观测到的一次太阳射电爆发事件,证认了这次爆发的一部分是微波类II型爆发.计算结果表明,这次II型爆发是由速度为1.0×108m/s的相对论性电子束所引起的,产生电子束的源区背景温度为T~3×107K,射电爆发亮温度Tb~1012K,爆发源区的尺度L~3.4×102km.  相似文献   

18.
本介绍了云南天台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辨率同步观测得到的五个微波III爆发事件,它们具有宽频带,长和短寿命,内向和外向快速频漂等特征,观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生,这些观测特征即可不完全同于米波-分米波III型爆发,也不完全同于微波高频段III型爆发,说明在微波低频段可能存在二重性或过渡现象。  相似文献   

19.
综述云南天文台在太阳活动22周峰年期间观测到的米波射电频谱资料,处理资料时发现230~300MHz频段有一些有趣的观测现象。如米波Ⅲ型爆发;“blips”;毫秒级Spike与Ⅲ型爆发共存事件;快速脉动等。根据这些事件的现象,讨论了它们的产生机制。  相似文献   

20.
太阳射电爆发与高能质子加速过程   总被引:3,自引:0,他引:3  
根据近年来地面和空间观测资料的统计分析指出:(1)太阳质子事件(或质子耀斑)的发生同起伏剧烈的强微波爆发(包括脉冲和IVμ型爆发)或短分米波IV型爆发存在着紧密的共生关系(共生率趋近100%);(2)约有24%-30%的质子事件没有对应的II型爆发。这一结果否定了以前认为II型爆发中的激波加速是产生质子事件必要条件的看法,进而论证了产生强微波(脉冲或IVμ型)爆发的相对论性电子(≥500keV)与  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号