首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent observations of nearby star forming regions have offered evidence that young brown dwarfs undergo a period of mass accretion analogous to the T Tauri phase observed in young stars. Brown dwarf analogs to stellar protostars, however, have yet to be definitively observed. These young, accreting objects would shed light on the nature of the dominant brown dwarf formation process, as well as provide ideal laboratories to investigate the dependence of the accretion mechanism on protostellar mass. Recent near infrared surveys have identified candidate proto‐brown dwarfs and characterized low mass protostars in nearby star forming regions. These techniques allow near infrared spectra to diagnose the effective temperature, accretion luminosity, magnetic field strength and rotation velocity of young low mass stars across the stellar/substellar boundary. The lowest mass proto‐brown dwarfs (M < 40 MJup), however, will prove challenging to observe given current near IR observational capabilities. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M≥100M . These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main-Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300M galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10−6 and 10−9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low-metallicity massive stars are hotter and more compact and luminous than their metal-enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have significant influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.  相似文献   

3.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

4.
Cross correlations between observed and synthetic spectra are used to discover yet another satellite of BM Ori with the following characteristics: effective temperature Teff = 4000 K, radius R = 16R, mass M = 1.8M, spectral type K7 III, absolute bolometric stellar magnitude Mb = + 4m·0, axial rotation velocity V sini = 85 km/s, and relative luminosity 0.005 near the V band. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 111–120 (February 2006).  相似文献   

5.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

6.
We study the structure of protoneutron stars within the finite-temperature Brueckner–Bethe–Goldstone many-body theory. If nucleons, hyperons, and leptons are present in the stellar core, we find that neutrino trapping stiffens considerably the equation of state, because hyperon onsets are shifted to larger baryon density. However, the value of the critical mass turns out to be smaller than the “canonical” value 1.44M . We find that the inclusion of a hadron-quark phase transition increases the critical mass and stabilizes it at about 1.5–1.6M .   相似文献   

7.
The evolution of young (≲ 10 Myr) star clusters with a density exceeding about 105 star pc−3 are strongly affected by physical stellar collisions during their early lifetime. In such environments the same star may participate in several tens to hundreds of collisions ultimately leading to the collapse of the star to a black hole of intermediate mass. At later time, the black hole may acquire a companion star by tidal capture or by dynamical – three-body – capture. When the captured star evolves it starts to fill its Roche-lobe and transfers mass to its accompanying black hole. This then leads to a bright phase of X-ray emission, which lasts for the remaining main-sequence lifetime of the donor. If the star captured by the intermediate mass black hole is relatively low mass ≲ 2 M⊙) the binary will also be visible as a bright source in gravitational waves. Based on empirical models we argue that, for as long as the donor remains on the main sequence, the source will be ultraluminous Lx >rsim 1040 ergs-1 for about a week every few month. When the donor star is more massive >15 M⊙, or evolved off the main sequence the bright time is longer, but the total accretion phase lasts much shorter.  相似文献   

8.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

9.
The ionizing star BD+60°2522 is known as the central star of Bubble Nebulae NGC 7635—wind-blown bubble created by the interaction of the stellar wind of BD+60°2522 (O6.5 IIIef, V=8.7 mag, mass loss rate 10−5.76 M /year) with the ambient interstellar medium. From the evolutionary calculations for the star with mass loss and overshooting, we find that the initial mass of the star is 60M , its present age is 2.5×106 years, and the present mass is 45M .  相似文献   

10.
We have searched for CO outflows in eight embedded IRAS sources located in the Taurus molecular cloud using the 45m telescope of Nobeyama Radio Observatory. We have detected CO wing emission in four of these sources. CO outflow associated with TMC1A (04365+2535) is strong and spatially compact (radius 0.04 pc). The dynamical timescale of 2.5 × 103 yr suggests this outflow is the youngest one in Taurus.We have combined our data with previously published survey data and have analyzed the physical properties of the outflow sources. We found that 12 out of 16 embedded sources ( 75 %) have CO outflows associated with them; this indicates that almost all stars experience a phase of molecular outflow in their embedded stage. The IRAS color of the outflow sources suggests that the outflows appear in considerably early phase of the evolution of YSOs, that is, as early as YSOs became observable with IRAS and that visible outflow sources are in a transient phase of evolution between embedded sources and visible T Tauri stars without outflow. Visible outflow sources are systematically more luminous than visible no-outflow sources, while embedded outflow sources have comparable luminosities with visible no-outflow sources. Such luminosity function suggests that the YSOs with outflow undergo mass accretion and increase their stellar mass as they progress from embedded sources to visible outflow sources. Typical mass accretion rate derived from the bolometric luminosity is 2 ×10–6 M yr –1. The timescale for mass accretion to acquire typical stellar mass, 0.5 – 0.8M , is 2.5 – 4 × 105 yr.  相似文献   

11.
The nature of Ultraluminous X-ray Sources – X-ray sources which exceed the Eddington luminosity for a ∼10 M black hole – remains a mystery. One possible explanation is an inhomogeneous accretion disk around a solar mass black hole where photon transport through radiation-pressure dominated “photon bubbles” can lead to super-Eddington accretion. While previous studies of this model have focused primarily on its radiation-hydrodynamics aspects, here we explore some observational implications of such a model with a Monte Carlo–Fokker Planck radiation transport code.  相似文献   

12.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

13.
We examine the disc-jet connection in stellar mass and supermassive black holes by investigating the properties of their compact emission in the hard X-ray and radio bands. We compile a sample of ∼100 active galactic nuclei with measured mass, 5 GHz core emission, and 2–10 keV luminosity, together with eight galactic black holes with a total of ∼50 simultaneous observations in the radio and X-ray bands. Using this sample, we study the correlations between the radio (LR) and the X-ray (LX) luminosity and the black hole mass (M). We find that the radio luminosity is correlated with both M and LX, at a highly significant level. We show how this result can be used to extend the standard unification by orientation scheme to encompass unification by mass and accretion rate.  相似文献   

14.
Results from two-color VR photometry of the unique cataclysmic magnetic variable star V1432 Aql and a theoretical model of these data are presented. The accuracy is improved by using the “mean-weighted comparison star” method. The derivative of the rotational period is dP/dt = −1.11(±0.016)·10−8. The characteristic synchronization time for the rotational and orbital motions of the white dwarf is 96.7±1.5 years, in good agreement with theory for the acceleration of an asynchronous propeller owing to the angular momentum of accreting matter. A third type of minimum detected in the light curve is interpreted in terms of the presence of an arc, or ring, rather than an accretion disk. A theoretical model is developed for determining the capture radius of accreted matter by the magnetic field of the white dwarf using the phase difference between the two types of minima associated with the axial rotation. This parameter is estimated to be 16–28 times the radius of the white dwarf for an inclined column model. A dependence of the main characteristics of the system on the mass of the white dwarf is derived which yields better values for the range of this quantity than those determined by indirect methods. For the assumed masses (M1 = 0.9 M and M2 = 0.3 M) the estimated accretion rate is ∼7×10−10 M. It is shown that in a synchronizing polar the contribution to the change in the period by the variation in the angular momentum of the white dwarf is negligible compared to the accretion torque. In the future multicolor monitoring is needed for studying the spin-orbital synchronization and periodic changes in the accretion structure caused by “spinning” of the white dwarf. __________ Translated from Astrofizika, Vol. 50, No. 1, pp. 135–159 (February 2007).  相似文献   

15.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

16.
Instability of population I (X = 0.7, Z = 0.02) massive stars against radial oscillations during the post-main-sequence gravitational contraction of the helium core is investigated. Initial stellar masses are in the range 65M M ZAMS ≤ 90M . In hydrodynamic computations of self-exciting stellar oscillations we assumed that energy transfer in the envelope of the pulsating star is due to radiative heat conduction and convection. The convective heat transfer was treated in the framework of the theory of time-dependent turbulent convection. During evolutionary expansion of outer layers after hydrogen exhaustion in the stellar core the star is shown to be unstable against radial oscillations while its effective temperature is T eff > 6700 K for M ZAMS = 65M and T eff > 7200 K for M ZAMS = 90M . Pulsational instability is due to the κ-mechanism in helium ionization zones and at lower effective temperature oscillations decay because of significantly increasing convection. The upper limit of the period of radial pulsations on this stage of evolution does not exceed ≈200 day. Radial oscillations of the hypergiant resume during evolutionary contraction of outer layers when the effective temperature is T eff > 7300 K for M ZAMS = 65M and T eff > 7600 K for M ZAMS = 90M . Initially radial oscillations are due to instability of the first overtone and transition to fundamental mode pulsations takes place at higher effective temperatures (T eff > 7700 K for M ZAMS = 65M and T eff > 8200 K for M ZAMS = 90M ). The upper limit of the period of radial oscillations of evolving blueward yellow hypergiants does not exceed ≈130 day. Thus, yellow hypergiants are stable against radial stellar pulsations during the major part of their evolutionary stage.  相似文献   

17.
Empirical evidence for both stellar mass black holes (M <102M ) and supermassive black holes (SMBHs, M >105M ) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion σ c , the M σ relation. On the other hand, evidence for “intermediate-mass” black holes (IMBHs, with masses in the range 100–105 M ) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M σ relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M σ relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M σ relation.  相似文献   

18.
We investigate numerically the chemodynamical evolution of major disc–disc galaxy mergers in order to explore the origin of the mass-dependent chemical, photometric and spectroscopic properties observed in elliptical galaxies. We investigate especially the dependence of the fundamental properties on merger progenitor disc mass (M d). Three main results are obtained in this study:– More massive (luminous) ellipticals formed by galaxy mergers between more massive spirals have higher metallicity (Z) and thus show redder colours; the typical metallicity ranges from ∼ 1.0 solar abundance (Z∼ 0.02) for ellipticals formed by mergers with M d = 1010 M to ∼ 2.0 solar (Z∼ 0.04) for those with M d= 1012 M .– Both the Mg2 line index in the central part of ellipticals (R ≤ 0.1 R e) and the radial gradient of Mg2 (δ Mg2 / δ log R) are more likely to be larger for massive ellipticals. δ Mg2 / δ log R correlates reasonably well with the central Mg2 in ellipticals. For most of the present merger models, ellipticals show a positive radial gradient of the Hβ line index. – Both M/L B and M/L K (where M, L B, and L K are the total stellar mass of galaxy mergers, the B-band and the K-band luminosities, respectively) depend on galactic mass in such a way that more massive ellipticals have larger M/L B and smaller M/L K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
There is a long term dynamical heating of stellar populations with age observed in the age – velocity dispersion – relation (AVR). This effect allows a determination of the star formation history SFR(t) from local kinematical data of main sequence stars. Using a self-consistent disk model for the vertical structure of the disk, we find from the kinematics of the stars in the solar neighbourhood that the SFR shows a moderate star burst about 10 Gyr ago followed by a continuous decline to the present day value consistent with the observed number of OB stars. The gravitational potential of the gas component and of the Dark Matter Halo is included and the effect of chemical enrichment, finite lifetime of the stars and mass loss of the stellar component are taken into account. The scale heights for main sequence stars together with the SFR is then used to determine constistently the IMF from the observed local luminosity function. The main new result is that the power law break in the present day mass function (PDMF) around 1 M is entirely due to evolutionary effects of the disk and does not appear in the IMF. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号