首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lorca earthquake (southeast Spain) on May 11, 2011; Mw 5.1, and its aftershocks, have provided an important set of accelerograms recorded by the strong motion network of the Instituto Geográfico Nacional of Spain. It is particularly noticeable that the record obtained in Lorca town, very near of the fault rupture, presents a PGA value close to 0.37 g in the N30W component. This paper provides an overview of the strong motion data recorded during the Lorca seismic series, with particular attention to the accelerograms from the mainshock and foreshock and its characteristics. Due to the special circumstances of these two records, a more detailed processing has been required, in which various alternatives to adjust the baseline have been considered and analyzed. Based on this special processing, small residual displacements were obtained and reported in some of these cases. However, given the sensitivity of the process and the small obtained values, these findings should be taken with caution. Besides, response spectra have been analyzed and compared with design spectra proposed by the Spanish Seismic Code (NCSE-02) for the towns of Lorca, Alhama de Murcia and Mula. Large amplitude differences were observed in these spectra if compared to those recorded in Lorca. Also noteworthy is that the design spectra proposed for this town were exceeded by some horizontal directions of the response spectra.  相似文献   

2.
In this paper, empirical ground-motion models for the vertical and average horizontal components of peak ground-motion and acceleration response spectra from shallow crustal earthquakes are derived using near-source database. These attenuation relationships were derived using a worldwide dataset consisted of corrected and processed accelerograms of 678 strong-motion records recorded with 60 km of the rupture plane of earthquakes between Mw 5.2 and 7.9. Ground motion models are functions of earthquake mechanism, distance from source to site, local average shear wave velocity, nonlinear soil response, sediment depth, depth-to-top of the rupture, hanging wall effects and faulting mechanism.  相似文献   

3.
Random vibration analyses of structural systems subjected to seismic loading are dependent upon the characterization of earthquake ground motion as a stochastic process. The response of structural systems to earthquakes is dependent strongly on the local geological conditions, which should be incorporated into seismological models of ground motion. In the study presented herein, three previously developed ground-motion models are adapted to incorporate site-dependent characteristics. Records obtained from two recording stations in California are used as a basis for the ground-motion models. Single-degree-of-freedom (SDOF) oscillators are subjected to ensembles of accelerograms generated from these models, and both elastic and inelastic response are considered. Response statistics are compared to those generated by the analysis of structural response to ensembles of recorded motion from the two sites. The important features of the ground motion for effective reproduction of response statistics are identified, and observations are made on the sensitivity of specific response parameters to site-dependent characteristics of the ground motion.  相似文献   

4.
The paper presents recent achievements in evaluations of site-dependent seismic hazard in Romania and the capital city of Bucharest caused by the Vrancea focal zone (SE-Carpathians). The zone is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depths 60–170 km. The database that was used for the hazard evaluation includes parameters of seismicity, ground-motion source scaling and attenuation models (Fourier amplitude spectra), and site-dependent spectral amplification functions. Ground-motion characteristics were evaluated on the basis of several hundred records from more than 120 small magnitude (M 3.5–5) earthquakes occurred in 1996–2001 and a few tens of acceleration records obtained during four large (M 7.4, 7.2, 6.9 and 6.3) earthquakes. The data provide a basis for probabilistic seismic hazard assessment in terms of peak ground acceleration, peak spectral acceleration and MSK intensity using Fourier amplitude spectra for various exceedance probabilities or average return periods. It has been shown that the influence of geological factors plays very important role in distribution of earthquake ground-motion parameters along the territory of Romania.  相似文献   

5.
The first ground-motion prediction equation derived from European and Middle Eastern strong-motion data was published more than 30 years ago; since then strong-motion networks and the resulting databank of accelerograms in the region have expanded significantly. Many equations for the prediction of peak ground-motion parameters and response spectral ordinates have been published in recent years both for the entire Euro-Mediterranean and Middle Eastern region as well as for individual countries within this region. Comparisons among empirical ground-motion models for these parameters, developed using large regional datasets, do not support the hypothesis of there being significant differences in earthquake ground-motions from one area of crustal seismicity to another. However, there are certain regions within Europe—affected by different tectonic regimes—for which the existing pan-European equations may not be applicable. The most recent European equations make it possible to now implement overdue modifications to the presentation of seismic design actions in Eurocode 8 that allow an improved approximation to the target uniform hazard spectrum (UHS). Using these recent equations, this study outlines a new approach via which an approximation to the UHS may be constructed using hazard maps calculated for peak ground velocity and the corner period T D in addition to the maps for peak ground acceleration that underpin the current stipulations of Eurocode 8.  相似文献   

6.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   

7.
Over 700 accelerograms recorded from 12 earthquakes in northeast Taiwan have been analysed for investigating the behaviour of the vertical and horizontal peak and spectral ground motion in the near-source region. Pseudo-relative spectral velocities (PSV), at 5 per cent critical damping for 23 frequencies in the range of engineering interest have been subjected to non-linear regression procedures in terms of magnitude and hypocentral distance. Predicted response spectra for several discrete distances and magnitudes are presented. The results show that the shape of response spectra for both vertical and horizontal components of ground motion is magnitude- as well as distance-dependent. The 2/3 ratio of vertical to horizontal ground motion, commonly used in engineering applications, appears unconservative in the very near field for high frequency ground motion. However, it falls below 1/2 at distances greater than 50 km. The same ratio for peak ground velocity (PGV) and peak ground displacement (PGD) tends to increase with distance—the latter at a faster rate.  相似文献   

8.
利用美国西部的中小地震记录对基岩场地条件下的中小地震水平向地震动多阻尼加速度反应谱的衰减关系进行了初步研究,并分析了震级与距离对中小地震水平向地震动加速度反应谱衰减规律的影响.  相似文献   

9.
This paper proposes energy input spectra applicable to seismic design of structures located in low‐to‐moderate‐seismicity regions. These spectra represent the load effect, in terms of input energy, of the most severe earthquake that the construction might encounter during its lifetime. The spectra have been derived through dynamic response analyses of over 100 ground motion records obtained from 48 earthquakes that have occurred in Spain. An empirical equation for estimating the energy input contributable to damage from the total input energy is also suggested. This equation takes into account both the damping and the degree of plastification of the structure. Finally, the proposed design energy input spectra are compared with the provisions of the current Spanish Seismic Code and with the response spectra of recent earthquakes that have occurred in Turkey and Taiwan. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Hazard-consistent ground-motion characterisations of three representative sites located in the Region of Murcia (southeast Spain) are presented. This is the area where the last three damaging events in Spain occurred and there is a significant amount of data for comparing them with seismic hazard estimates and earthquake-resistant provisions. Results of a probabilistic seismic hazard analysis are used to derive uniform hazard spectra (UHS) for the 475-year return period, on rock and soil conditions. Hazard deaggregation shows that the largest hazard contributions are due to small, local events for short-period target motions and to moderate, more distant events for long-period target motions. For each target motion and site considered, the associated specific response spectra (SRS) are obtained. It is shown that the combination of two SRS, for short- and long-period ground motions respectively, provides a good approximation to the UHS at each site. The UHS are compared to design response spectra contained in current Spanish and European seismic codes for the 475-year return period. For the three sites analysed, only the Eurocode 8 (EC8) type 2 spectrum captures the basic shape of the UHS (and not the EC8 type 1, as could be expected a priori). An alternative response spectrum, anchored at short- and long-period accelerations, is tested, providing a close match to the UHS spectra at the three sites. Results underline the important contribution of the frequent, low-to-moderate earthquakes that characterize the seismicity of this area to seismic hazard (at the 475-year return period).  相似文献   

11.
The objective of this paper is to present ground-motion prediction equations describing constant-ductility inelastic spectral ordinates and structural behaviour factors. These equations are intended for application within the framework of Eurocode 8. Most of the strong-motion data used in the present work is obtained from the ISESD (Internet Site for European Strong-motion Data) databank. Present analysis includes ground motion records from significant Icelandic earthquakes, which are augmented by records obtained from continental Europe and the Middle East. In all cases the selected ground motion records are generated during shallow earthquakes within a distance of 100 km from the recording station. The classification of site conditions in the present work is based on the Eurocode 8 definition.  相似文献   

12.
This work summarises the seismic hazard analysis performed for the complete characterisation of strong ground-motion at the site of the Itoiz dam (Western Pyrenees, Spain). The hazard analysis includes the compilation of a composite catalogue from French and Spanish agencies, the definition of an original hybrid seismogenic source model (including zones and major faults) and the selection of ground motion prediction equations (GMPEs). Hazard results are provided as hazard curves and acceleration response spectra on rock for the 1000- and 5000-year return periods, which correspond respectively to the operating basis earthquake (OBE) and safety evaluation earthquake (SEE). The impact of truncating GMPEs at a number of standard deviations (epsilon) has been found not critical here for the return periods targeted. Subsequently, an analysis of the contribution of each source to total hazard and a hazard disaggregation analysis are performed in order to establish the earthquake-source parameters for both the OBE and SEE scenarios consistently with the seismotectonics of the region. The European Strong Motion database is then searched and a selection of records is proposed for each of the scenarios. Our results suggest that seismic hazard in the region is underestimated by the official Spanish seismic hazard map included in the current version of the code (NCSE-02), which is the reference document for the definition of seismic actions for dam projects in the whole Pyrenees.  相似文献   

13.
A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.  相似文献   

14.
设计反应谱长周期区段的研究   总被引:24,自引:7,他引:17  
本文利用近20年国内外大地震时获得的数字强震仪记录分析强震动的长周期分量特性,给出了不同场地上的平均加速度反应谱及其拟合曲线。结果表明,现行抗震设计规范中设计谱的特征周期和长周期谱值明显偏小。在此基础上提出了长周期设计反应谱的修正建议。文中还根据统计分析提出了不同阻尼比的反应谱修正公式。  相似文献   

15.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

16.
This paper deals with the use of ARMA models in earthquake engineering. Tools and methods applied to strong ground motion are discussed emphasizing simulation of probabilistic earthquake response spectra. The ARMA models are applied to Icelandic earthquake data and a tentative model for Icelandic earthquakes is presented. This model, which is derived using 54 accelerograms, is based on a low-order, time-invariant ARMA process excited by Gaussian white noise and amplitude modulated using a simple envelope function to account for the non-stationary characteristics. This simple model gives a reasonable fit to the observed ground motion. Further, this model produces accurate earthquake response spectra, which, combined with accompanying attenuation and duration formulae, might be useful in earthquake hazard and risk assessment.  相似文献   

17.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

18.
This paper presents site-specific and spatially-distributed ground-motion intensity estimates which have been utilized in the aftermath of the 2010–2011 Canterbury, New Zealand earthquakes. The methodology underpinning the ground motion intensity estimation makes use of both prediction models for ground motion intensity and its within-event spatial correlation. A key benefit of the methodology is that the estimated ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and standard deviation, with the standard deviation being a function of the distance to nearby observations at strong motion stations.The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence, which among other things, have been utilized for assessing liquefaction triggering susceptibility of land in residential areas. Secondly, the conditional distribution of response spectral ordinates is obtained at the location of the Canterbury Television building (CTV), which catastrophically collapsed in the 22 February 2011 earthquake. The conditional response spectra provide insight for the selection of ground motion records for use in forensic seismic response analyses of important structures at locations where direct recordings are absent.  相似文献   

19.
We present the regional ground-motion prediction equations for peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and seismic intensity (MSK scale) for the Vrancea intermediate depth earthquakes (SE-Carpathians) and territory of Romania. The prediction equations were constructed using the stochastic technique on the basis of the regional Fourier amplitude spectrum (FAS) source scaling and attenuation models and the generalised site amplification functions. Values of considered ground motion parameters are given as the functions of earthquake magnitude, depth and epicentral distance. The developed ground-motion models were tested and calibrated using the available data from the large Vrancea earthquakes. We suggest to use the presented equations for the rapid estimation of seismic effect after strong earthquakes (Shakemap generation) and seismic hazard assessment, both deterministic and probabilistic approaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号