首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interaction of dissolved natural organic matter (DNOM) with copper ions in the water column of the stratified Krka River estuary (Croatia) was studied. The experimental methodology was based on the differential pulse anodic stripping voltammetric (DPASV) determination of labile copper species by titrating the sample using increments of copper additions uniformly distributed on the logarithmic scale. A classical at-equilibrium approach (determination of copper complexing capacity, CuCC) and a kinetic approach (tracing of equilibrium reconstitution) of copper complexation were considered and compared. A model of discrete distribution of organic ligands forming inert copper complexes was applied. For both approaches, a home-written fitting program was used for the determination of apparent stability constants (Kiequ), total ligands concentration (LiT) and association/dissociation rate constants (ki1,ki- 1).A non-conservative behaviour of dissolved organic matter (DOC) and total copper concentration in a water column was registered. An enhanced biological activity at the freshwater–seawater interface (FSI) triggered an increase of total copper concentration and total ligand concentration in this water layer. The copper complexation in fresh water of Krka River was characterised by one type of binding ligands, while in most of the estuarine and marine samples two classes of ligands were identified. The distribution of apparent stability constants (log K1equ: 11.2–13.0, log K2equ:8.8–10.0) showed increasing trend towards higher salinities, indicating stronger copper complexation by autochthonous seawater organic matter.Copper complexation parameters (ligand concentrations and apparent stability constants) obtained by at-equilibrium model are in very good accordance with those of kinetic model. Calculated association rate constants (k11:6.1–20 × 103 (M s)− 1, k21: 1.3–6.3 × 103 (M s)− 1) indicate that copper complexation by DNOM takes place relatively slowly. The time needed to achieve a new pseudo-equilibrium induced by an increase of copper concentration (which is common for Krka River estuary during summer period due to the nautical traffic), is estimated to be from 2 to 4 h.It is found that in such oligotrophic environment (dissolved organic carbon content under 83 µMC, i.e. 1 mgCL− 1) an increase of the total copper concentration above 12 nM could enhance a free copper concentration exceeding the level considered as potentially toxic for microorganisms (10 pM).  相似文献   

2.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

3.
The acute lethality and sublethal heavy metal contamination potential to marine organisms of a waste brine solution from a potash mining operation were determined. The brine was acutely lethal to marine organisms of the Bay of Fundy, Canada, at concentrations between 47 and 55‰ salinity (96-h LC50 values: threespine stickleback, Gasterosteus aculeatus, 47·7‰; polychaete worm, Nephtys incisa, 52·5‰; blue mussel, Mytilus edulis, lethal to whole animal and reduced ciliary activity of gills above 55‰).The brine diluted to sublethal concentrations (≤40‰) contained manganese (≤ 49·5 ×), copper and zinc (≤ 5·2 ×), lead (≤ 2·6 ×) and cadmium (≤ 0·7 ×) in decreasing order of enrichment relative to control seawater. Copper was accumulated in mussels exposed to these solutions over 44 days to the greatest degree (4 ·4 ×), followed by manganese and lead. Tissue lead concentration reached a steady value within 44 days and cadmium was not accumulated.  相似文献   

4.
A liquid-liquid partition, ligand exchange procedure involving the formation of copper(II) complexes with acetylacetone is presented for the determination of stability constants and concentrations of copper chelators in seawater. Acetylacetone competes with natural ligands for copper, and the equilibrium concentration of the copper acetylacetonate complex is used in speciation calculations. The concentration of the complex is calculated by partitioning a fraction of it into an organic phase and determining the total Cu concentration in that phase by back extracting with acid, and analyzing by flameless atomic absorption spectroscopy. The concentration of Cu acetylacetonate in seawater in equilibrium with the organic phase is calculated from the partition coefficient. The simple, thermodynamically well characterized procedure offers several advantages over previous techniques. Studies using organic free seawater and model ligands show good agreement between experimental and calculated conditional stability constants. Studies from seawater in Biscayne Bay, Florida, indicate two ligand types are present; type 1, K1 = 1.2 × 1012, CL1 = 5.1 × 10−9 M; type 2, K2 = 2.8 × 1010, CL2 = 1.1 × 10−7 M. Speciation is dominated by ligand type 1. Depth profiles of [Cu(II)]free/[Cu(II)]total measured with the procedure at ambient copper concentrations show an increase from < 5 × 10−5 at 50–60 m to > 1 × 10−3 at the surface at two stations off the Florida coast.  相似文献   

5.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

6.
Speciation of copper and nickel in the water phase of incubated marine slurries under aerobic conditions was performed with MnO2 and Sep—Pak C18 cartridges. Changes in time during the incubations of concentrations of dissolved organic carbon (DOC), dissolved copper and nickel and inorganic nitrogen were followed. The influence of organic complexation on the dissolved concentrations of copper and nickel was investigated as well as competition between copper and nickel for dissolved organic ligands.Two pools of dissolved organic ligands could be distinguished. With the MnO2 method a relatively strong ligand group was determined that was subjected to degradation. The conditional stability constant for copper with the relatively strong ligand was 1011.1. The conditional stability constant for the relatively strong nickel ligand was difficult to determine due to saturation of the ligand sites; it was found to be around 1010. However, it could not be ascertained whether nickel was reversibly com-plexed with the organic ligands.With Sep—Pak a relatively weak Hgand group was detected that was probably more resistant to degradation. The conditional stability constant of the weaker ligand could not be estimated, an approximation revealed that it was weaker than the ligand group determined with the MnO2 method. For copper the difference between binding strength of the ligand groups was at least 100, for nickel the difference was less.Competition between copper and nickel for the ligands could not be detected. Only during the first day of the experiment, when the system was not in equilibrium was competition suspected. However, the replacement of nickel by copper from the ligand sites was not straightforward and could not be accounted for by our model.The concentration of total dissolved copper during the first week of the experiment was found to be controlled on the one hand by release from the sediment of copper already associated with dissolved organic matter (DOM) and on the other hand by concentration of the strongest ligand. The calculated free copper concentration increased from 10−12 to 10−9mol l−1 due to the oxidation of the strongest ligand. After saturation of the strongest ligand the relatively weak ligand controlled the free copper concentration. A continuing release of copper from the sediment by degradation of particulate organic matter (POM) will not increase the free copper concentration until the ligand sites of the weaker ligands get saturated.The total dissolved nickel concentration seemed only to be determined by the sum of the concentrations of the organic ligands. A degradation of ligands resulted in a decrease of the total dissolved nickel concentration. The calculated free nickel concentration did not change with time.  相似文献   

7.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

8.
The organic matter released by the marine phytoplankton species Dunaliella tertiolecta and its physico-chemical interaction with cadmium and copper ions were studied by electrochemical methods (differential pulse anodic stripping voltammetry (DPASV) and a.c. polarography). The interactions with cadmium and copper were studied at the model interface (mercury electrodesolution) and in the bulk phase by measuring the complexing ability of the released organic material.The axenic cultures were grown on different growth media, without and with trace metals and chelators. Culture media were analyzed 10 days after inoculation, containing 5 × 105−1.2 × 106 cells cm−3 when untreated or after separation of cells by gentle centrifugation.It was found that the content and type of the released surface-active material and complexing ligands depend on the initial composition of the growth media. In all cases, strong interaction of excreted organic substances with copper in the bulk phase and with cadmium at the model interface were observed.A rather high value of the complexing capacity, 9.5 × 10−7 mol Cu2+ dm−3, was found in the culture grown on medium without trace metals and chelators (medium I) whereas the surface activity of this culture was not high (0.2 mg dm−3 equivalent to Triton-X-100). Higher contents of surface-active material (0.8 and 1.0 mg dm−3) were found in cultures grown in media with trace metals and without chelators (II and III), accompanied by a high content of complexing ligands (5.8 × 10−7 and 9.5 × 10−7 mol Cu2+ dm−3). However, if the complexing capacity is calculated per cell the values obtained for cultures grown in media II and III (0.79 × 10−15 and 0.98 × 10−15 mol Cu2+ dm−3) are lower than for cultures grown on medium I (1.8 × 10−15 mol Cu2− dm−3). The exceptional adsorption effects and the copper complexing capacity for medium 1, and the presence of cells with degenerative symptoms can be ascribed to stressed growth conditions, and, particularly, to deficiency of metals. A qualitatively similar behaviour has been observed in natural samples of estuarine waters, indicating the existence of stressed conditions during the mixing of fresh and saline waters.  相似文献   

9.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

10.
Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment–water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA;P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (rs), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (rs=0·80, P<0·0001); high concentrations of RED Fe at the sediment–water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (rs=0·58;P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment–water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm–50μm) whereas sites not influenced by riverine input were primarily percent sand (grain size >50μm). Concentrations of organic matter declined from the mouth to the foreslope of the estuary. With the exception of RED Fe, temporal variation (May vs July) was insignificant (P>0·05, three-way ANOVA). Concentrations of RED Fe recovered from the surficial sediments were in general greater in the summer vs spring months, although spring and summer values were highly correlated (Pearson Product Moment Correlation Coefficient; PPCC; R=0·89;P<0·0001). As the bioavailability of metals is dependent on sediment geochemistry, availability throughout the intertidal region will also be spatially dependent. This heterogeneity needs to be taken into account in studies addressing the impact of metals on estuarine systems.  相似文献   

11.
A sensitive method for iron determination in seawater has been adapted on a submersible chemical analyser for in situ measurements. The technique is based on flow injection analysis (FIA) coupled with spectrophotometric detection. When direct injection of seawater was used, the detection limit was 1.6 nM, and the precision 7%, for a triplicate injection of a 4 nM standard. At low iron concentrations, on line preconcentration using a column filled with 8-hydroxyquinoline (8HQ) resin was used. The detection limit was 0.15 nM (time of preconcentration = 240 s), and the precision 6%, for a triplicate determination of a 1 nM standard, allowing the determination of Fe in most of the oceanic regimes, except the most depleted surface waters. The effect of temperature, pressure, salinity, copper, manganese, and iron speciation on the response of the analyser was investigated. The slope of the calibration curves followed a linear relation as a function of pressure (Cp = 2.8 × 10− 5P + 3.4 × 10− 2 s nmol− 1, R2 = 0.997, for Θ = 13 °C) and an exponential relation as a function of temperature (CΘ = 0.009e0.103Θ, R2 = 0.832, for P = 3 bar). No statistical difference at 95% confidence level was observed for samples of different salinities (S = 0, 20, 35). Only very high concentration of copper (1000 × [Fe]) produced a detectable interference. The chemical analyser was deployed in the coastal environment of the Bay of Brest to investigate the effect of iron speciation on the response of the analyser. Direct injection was used and seawater samples were acidified on line for 80 s. Dissolved iron (DFe, filtered seawater (0.4 μm), acidified and stored at pH 1.8) corresponded to 29 ± 4% of Fea (unfiltered seawater, acidified in line at pH 1.8 for 80 s). Most of Fea (71 ± 4%) was probably a fraction of total dissolvable iron (TDFe, unfiltered seawater, acidified and stored at pH 1.8).  相似文献   

12.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

13.
The effects of zinc being added to sea water, to final concentrations of 0·1–20 ppm, have been studied on the heart rate, valve movements, mortality of Scrobicularia and on both isolated and in situ inhalant siphon preparations.The acute toxicity threshold for added zinc was determined to be about 10 ppm at 10°C. The median lethal times for 10 and 20 ppm zinc were 143·5 and 116·1 h respectively.The responses of Scrobicularia to zinc concentrations in sea water of between 0·1 and 10 ppm were tested by exposure for 6 h. Above 1 ppm, valve closure and bradycardia occur within 10–15 min. Below 5 ppm the valves subsequently opened and heart rate increased over the 6 h period, but in 10 ppm closure and pronounced bradycardia were maintained throughout.Addition of zinc, to final concentrations of 1, 5 and 10 ppm, had no effect on the isolated inhalant siphon in contrast to copper at 0·25 and 0·5 ppm which caused very marked siphonal contractions. However, when zinc (1–10 ppm) was added to an in situ inhalant siphon preparation, contractions occurred which were lost on removal of zinc from the bathing medium. Cutting the cruciform muscles medially resulted in the loss or delay of the response to zinc. This suggests the possibility of the cruciform muscle complex (muscle strands and associated sense organs) responding to zinc. This contrasts with the direct action of copper on the neuromuscular system of an isolated siphon.  相似文献   

14.
A new method is proposed for the determination of complexing capacities and conditional stability constants for complexes of copper(II) with dissolved organic ligands in seawater. This method is based on ligand competition by the added ligand catechol for free metal ions. The concentration of copper-catechol complex ions is measured with great sensitivity by cathodic stripping voltammetry. The concentration of the free copper ion is calculated from the concentration of copper-catechol complex ions. Ligand concentrations and conditional stability constants are obtained from a titration of the ligands with copper. Two techniques for treatment of the data are compared. A seawater sample, originating from open oceanic conditions, is analysed and two complexing ligands were detected, having concentrations of 1.1 × 10?8 and 3.3 × 10?8 M, and conditional stability constants (log KCuL) of 12.2 and 10.2, respectively.  相似文献   

15.
Common dab were fed a casein based diet containing copper at a concentration of 1·4 mg copper kg−1 (dry weight) or a similar diet supplemented with 200 mg copper kg−1. Fish were sampled after 10 weeks and 20 weeks and hepatic and renal copper, zinc and metallothionein concentrations were measured. All hepatic cytosolic copper in test and control fish co-eluted from Sephadex G-75 with metallothionein, as did some of the cytosolic zinc. After 20 weeks there was three times as much of this metallothionein-bound copper in the livers of the test fish compared to the control fish, although metallothionein concentration was little elevated. On the basis of these results it is proposed that cytosolic liver copper concentration or heat stable liver copper concentration can be used as an indication of excess dietary copper in the dab Limanda limanda.  相似文献   

16.
Evidence for organic complexation of iron in seawater   总被引:1,自引:0,他引:1  
Iron occurs at very low concentrations in seawater of oceanic origin and its low abundance is thought to limit primary production in offshore waters (Martin and Fitzwater, 1988). A new electrochemical method, cathodic stripping voltammetry (CSV), is used here to determine the speciation of iron in seawater originating from the Western Mediterranean taking advantage of ligand competition of an added electroactive ligand with the natural organic complexing matter to evaluate whether iron is organically complexed. The measurements indicate that iron occurs 99% (or 99.9% depending on which value is selected for αFe) complexed by organic complexing ligands throughout the water column of the Western Mediterranean and by analogy probably also in other oceanic waters. The composition of the organic complexing ligands is as yet unknown, but the data indicate a major source from microorganisms (bacteria or phytoplankton) in and immediately below the fluorescence maximum in the upper water column. The organic complexes are apparently reversible releasing iron when the competing ligand is added and binding more iron when its concentration is increased. The organic complexing ligands occur at concentrations well above those of iron ensuring full complexation of this biologically essential element, and buffer the free iron concentration at a very low level against fluctuations as a result of removal by primary producers or inputs from atmospheric sources. The new data indicate that a re-evaluation of the concept of the bioavailable fraction of iron is required.  相似文献   

17.
Dissolved trace element (copper, nickel, cadmium, zinc, cobalt, and iron) concentrations were measured in surface water samples collected from 27 stations in the San Francisco Bay and Sacramento—San Joaquin Delta during April, August and December of 1989. The trace element distributions were relatively similar for all three sampling periods, and evidenced two distinct biogeochemical regimes within the estuarine system. The two regimes were comprised of relatively typical trace element gradients in the northern reach and anthropogenically perturbed gradients in the southern reach of the estuary. These dichotomous trace element distributions were consistent with previous reports on the distributions of nutrients and some other constituents within the estuary.In the northern reach, trace element and dissolved phosphate concentrations were non-conservative. Simple estuarine mixing models indicated substantial internal sources of dissolved copper (46–150%), nickel (250–500%) and cadmium (630–780%) relative to riverine inputs in April and August, and sizable internal sinks for dissolved cobalt (> 99%) and iron (> 70%) during the same periods. Dissolved zinc fluxes varied temporally, with a relatively large (135%) internal source in April and a relatively small (29%) internal sink in August.Concentrations of many trace elements (copper, nickel, cadmium, zinc, and cobalt) in the southern reach were anomalously high relative to concentrations at comparable salinities in the northern reach. Mass balance calculations indicated that those excesses were primarily due to anthropogenic inputs (waste-water discharges and urban runoff) and diagenetic remobilization from benthic sediments. The magnitude of these excesses was amplified by the long hydraulic residence time of dissolved constituents within the South Bay.The influence of other factors was evident throughout the system. Notably, upwelling appeared to elevate substantially dissolved cadmium concentrations at the mouth of the estuary and authigenic flocculation appeared to dominate the cycling of dissolved iron in both the northern and southern reaches of the system. Biological scavenging, geochemical scavenging and diagenic remobilization were also found to be important in different parts of the estuary. Additional complementary information is required to quantify accurately these processes.  相似文献   

18.
Two independent voltammetric techniques, differential pulse cathodic stripping voltammetry (DPCSV) and differential pulse anodic stripping voltammetry (DPASV), determined that 95% of the dissolved zinc is organically complexed at two depths (60 and 150 m) within the surface euphotic zone at an open ocean station in the Northeast Pacific. Average values for the concentrations of the natural zinc-complexing organic ligands (CL) obtained from duplicate determinations at these two depths by DPCSV versus DPASV are in excellent agreement: 1.60 ± 0.01 versus 1.76 ± 0.03 nM at 60 m, and 2.14 (n=1) versus 2.22 ± 0.06 nM at 150 m. Average values for the conditional stability constants (with respect to free Zn2+) of the natural zinc-organic complexes (log KZnL) from duplicate determinations at both depths by DPCSV versus DPASV are 10.3 ± 0.2 versus 11.2 ± 0.2. Additional research is required to assess the significance of the difference in the conditional stability constants determined by these two techniques. These results confirm recent observations that strong zinc complexes formed with an organic ligand class existing at nanomolar concentrations dominates zinc speciation in the North Pacific.  相似文献   

19.
A worldwide literature survey of data on cadmium concentration in the soft tissue of the mussel, Mytilus spp., from 591 stations is presented. These stations are from 13 regions. Geometric means for the regions vary from 0·6 to 3·3 μg g−1 (dry weight) for the Barents Sea and the Northeastern Pacific coast, respectively.The averages of seven of these regions, for which reliable cadmium concentrations in seawater were available, were used to calculate a relationship between cadmium concentrations in seawater and mussel soft tissue. The relationship was highly significant: (Cd) mussel (μg g−1, dry weight) = 0·074 (Cd) water (ng litre−1) + 0·39 (P ≤ 0·0005).This model has been successfully applied in the context of the contamination of the Gironde estuary (France). It can also be used to define a water quality criterion for mussel maturing parks consistent with the quality criterion defined for shellfish for human consumption.  相似文献   

20.
Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below 40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号