首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
2.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

3.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents input–output budgets of total dissolved nitrogen (TDN), dissolved organic N (DON) and dissolved inorganic N (DIN) for a reservoir in a peatland catchment in the south Pennines (UK). This site receives high levels of atmospheric inorganic N deposition, in the range of 26 kg N ha?1 yr?1. The results show that the reservoir retains ~21 to 31% of the annual TDN input (8806 ± 741 kg N). Approximately 39 to 55% of DON (3782 ± 653 kg N) and 6 to 13% of DIN (5024 ± 349 kg N) were retained/processed. A long water retention time (104 days), average annual pH of 6.5, high concentrations of DIN in the reservoir water and a deep water column suggest that denitrification is potentially a key mechanism of N retention/removal. The results also demonstrate that DON is potentially photodegraded and utilized within the reservoir, particularly during the summer season when 58 to 80% of DON input (682 ± 241 kg N) was retained, and a net export of DIN (~34 kg N) was observed. The findings therefore suggest that DON may play a more crucial role in the biogeochemistry of peat‐dominated acid sensitive upland freshwater systems than previously thought. Reservoirs, impoundments and large lakes in peatland catchments may be important sites in mediating downstream N transport and speciation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using structure-from-motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12-month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus, direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1, respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A reliable and economical method for the estimation of nutrient export (e.g. phosphorus) in stream flow from catchments is necessary to quantify the impact of land use or land use change upon aquatic systems. The transport of phosphorus (P) from soil to water is known to impact negatively on water quality. A key observation from studies is that most P export occurs during high stream flow. However, it is not yet clear how flood-antecedent conditions affect the P export during flood events. In this study, the P loss from soil to water as represented by soluble reactive phosphorus (SRP) in stream waters from three different catchments, varying in land use, scale and location in Ireland was monitored over 1 year. This study examined the role of antecedent stream flow conditions on SRP export and identifies a catchment-specific relationship between SRP flood event load (EL) and a flow ratio (FR). The FR is defined as the ratio of the flood event volume (EV) to the pre-event volume (PEV). The latter is the cumulative flow volume for a number of days preceding the event. This PEV period was found to be longer (average 81 days) in the grassland catchments which were known to be saturated with soil P than in the forested catchments (average 21 days) with minimal soil P. This FR ratio is a measure of the antecedent hydrological state (wet or dry) of the catchment. For SRP for each catchment, a specific relationship between SRP EL and FR was identified. The annual SRP export was estimated, using this ratio and compared with the concentration/discharge (C/Q) method. The new flow ratio method was used with data from 12 flood events during the year to estimate an annual export of SRP. For the two grassland catchments in the study, using the FR method, we estimated an SRP export of 1.77 and 0.41 kg ha−1 yr−1. Using the C/Q method, for the same sites, our estimate of SRP export was 1.70 and 0.50 kg ha−1 yr−1 respectively. The C/Q method used SRP concentrations covering 40% of the year while the FR method used only 12 flood events covering less than 2% of the year. This new method which takes account of the antecedent flow state of the river is an alternative to and may be more promising than the traditional C/Q method, particularly when short duration or flood sampling of water quality is carried out.  相似文献   

9.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

10.
《Marine pollution bulletin》2014,81(1-2):234-244
Dissolved inorganic nitrogen (DIN), phosphate (PO4) and silicic acid (Si(OH)4) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO4, in contrast to the Mafragh estuary’s near-pristine inputs; Si(OH)4 levels were low in both estuaries. The DIN:PO4 molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si–Si(OH)4 (400–540 kg Si km2 yr1) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km2 yr1). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched.  相似文献   

11.
Agricultural, forestry-impacted and natural catchments are all vectors of nutrient loading in the Nordic countries. Here, we present concentrations and fluxes of total nitrogen (totN) and phosphorus (totP) from 69 Nordic headwater catchments (Denmark: 12, Finland:18, Norway:17, Sweden:22) between 2000 and 2018. Catchments span the range of Nordic climatic and environmental conditions and include natural sites and sites impacted by agricultural and forest management. Concentrations and fluxes of totN and totP were highest in agricultural catchments, intermediate in forestry-impacted and lowest in natural catchments, and were positively related %agricultural land cover and summer temperature. Summer temperature may be a proxy for terrestrial productivity, while %agricultural land cover might be a proxy for catchment nutrient inputs. A regional trend analysis showed significant declines in N concentrations and export across agricultural (−15 μg totN L−1 year−1) and natural (−0.4 μg NO3-N L−1 year−1) catchments, but individual sites displayed few long-term trends in concentrations (totN: 22%, totP: 25%) or export (totN: 6%, totP: 9%). Forestry-impacted sites had a significant decline in totP (−0.1 μg P L−1 year−1). A small but significant increase in totP fluxes (+0.4 kg P km−2 year−1) from agricultural catchments was found, and countries showed contrasting patterns. Trends in annual concentrations and fluxes of totP and totN could not be explained in a straightforward way by changes in runoff or climate. Explanations for the totN decline include national mitigation measures in agriculture international policy to reduced air pollution and, possibly, large-scale increases in forest growth. Mitigation to reduce phosphorus appears to be more challenging than for nitrogen. If the green shift entails intensification of agricultural and forest production, new challenges for protection of water quality will emerge possible exacerbated by climate change. Further analysis of headwater totN and totP export should include seasonal trends, aquatic nutrient species and a focus on catchment nutrient inputs.  相似文献   

12.
In humid, forested mountain belts, bedrock landslides can harvest organic carbon from above ground biomass and soil (OCmodern) while acting to refresh the landscape surface and turnover forest ecosystems. Here the impact of landslides on organic carbon cycling in 13 river catchments spanning the length of the western Southern Alps, New Zealand is assessed over four decades. Spatial and temporal landslide maps are combined with the observed distribution and measured variability of hillslope OCmodern stocks. On average, it is estimated that landslides mobilized 7.6 ± 2.9 tC km?2 yr?1 of OCmodern, ~30% of which was delivered to river channels. Comparison with published estimates of OCmodern export in river suspended load suggests additional erosion of OCmodern by small, shallow landslides or overland flow in catchments. The exported OCmodern may contribute to geological carbon sequestration if buried in sedimentary deposits. Landslides may have also contributed to carbon sequestration over shorter timescales (<100 years). 5.4 ± 3.0 tC km?2 yr?1 of the eroded OCmodern was retained on hillslopes, representing a net‐carbon sink following re‐vegetation of scar surfaces. In addition, it was found that landslides caused rapid turnover of the landscape, with rates of 0.3% of the surface area per decade. High rates of net ecosystem productivity were measured in this forest of 94 ± 11 tC km?2 yr?1, which is consistent with rapid landscape turnover suppressing ecosystem retrogression. Landslide‐OCmodern yields and rates of turnover vary between river catchments and appear to be controlled by gradients in climate (precipitation) and geomorphology (rock exhumation rate, topographic slope). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

14.
An important gap in the management of land erosion in mining-affected areas is the understanding of the entire sediment routing system and the links between sources and storage at the catchment scale. In this study, we examine sediment delivery and its seasonality in the nickel mining-affected Santa Cruz and Pamalabawan catchments in the Philippines. We monitored discharge, suspended sediment concentrations and suspended sediment loads across 13 sub-catchments with contrasting degrees of mining influence from June 2018 to July 2019. First, we show the importance of the size of the area that has been physically disturbed within our sub-catchments, with as little as 10–22% of relative disturbance area being enough to generate four-fold to eight-fold increase in the sediment yield relative to less disturbed and pristine areas. We found that sub-catchments with > 10% disturbance exhibit the highest sediment yields (15.5 ± 44.7 t km−2 d−1) compared with sub-catchments with < 10% disturbance (3.6 ± 17.7 t km−2 d−1) and undisturbed catchments (2.0 ± 5.7 t km−2 d−1). We also show that sediment flushing predominantly occurs in the most disturbed sub-catchments at the onset of the wet season. A small number of flood events transports the bulk of the sediment, with hysteresis effects being most pronounced in disturbed areas. Lastly, we show that floodplain sediment recycling exerts a key control on sediment delivery at both reach and catchment scales, with the relative contribution of floodplain sources to the sediment budget becoming dominant in the latter stages of the wet season- up to 89% of the total sediment export per storm event. This study highlights the importance of both degree of disturbance and sediment pathways in controlling sediment transport in mining-disturbed areas, and that considering the entire sediment routing system including intermediate stores is crucial to optimizing existing and future measures against siltation and potential contamination of trace metals and metalloids downstream of mining areas.  相似文献   

15.
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio-fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment-transfer processes is limited in the Alaskan Arctic – a region sensitive to contemporary environmental change. For two glaciated sub-catchments at Lake Peters, northeast Brooks Range, Alaska, we conducted a two-year endeavour to monitor the hydrology and meteorology, and used the data to derive multiple-regression models of suspended sediment load. Statistical selection of the best models shows that incorporating meteorological or temporal explanatory variables improves performances of turbidity- and discharge-based sediment models. The resulting modelled specific suspended sediment yields to Lake Peters are: 33 (20–60) t km−2 yr−1 in 2015, and 79 (50–140) t km−2 yr−1 in 2016 (95% confidence band estimates). In contrast to previous studies in Arctic Alaska, fluvial suspended sediment transfer to Lake Peters was primarily influenced by rainfall, and secondarily influenced by temperature-driven melt processes associated with clockwise diurnal hysteresis. Despite different sub-catchment glacier coverage, specific yields were the same order of magnitude from the two primary inflows to Lake Peters, which are Carnivore Creek (128 km2; 10% glacier coverage) and Chamberlin Creek (8 km2; 23% glacier coverage). Seasonal to longer-term sediment exhaustion and/or contrasting glacier dynamics may explain the lower than expected relative specific sediment yield from the more heavily glacierized Chamberlin Creek catchment. Absolute suspended sediment yield (t yr−1) from Carnivore Creek to Lake Peters was 27 times greater than from Chamberlin Creek, which we attribute to catchment size and sediment supply differences. Our results provide a foundational understanding of the current sediment transfer regime and are useful for predicting changes in fluvial sediment transport in glaciated Alaskan Arctic catchments.  相似文献   

16.
Runoff and nutrient transport by rivers were analysed in the Northern Adriatic continental shelf, in order to evaluate their interannual and multidecal variability, as well as their current contribution to determine freshwater and nutrient budgets in this marine region. During the years 2004-2007, the runoff in the basin (34.1-64.6 km3 yr−1) was highly imbalanced, being 84% of freshwater discharged along the western coast, because of the contributions of Po, Adige and Brenta rivers. In the northern and eastern sections of the coast, freshwater discharge by rivers was less important (10 and 6%, respectively), but not negligible in determining the oceanographic properties at sub-regional scales. The oscillations of the transport of biogenic elements (124-262×103 t N yr−1 for TN, 72-136×103 t N yr−1 for DIN, 4.5-11.1×103t P yr−1 for TP, 2.2-3.5×103 t P yr−1 for PO4 and 104-196×103 t Si yr−1 for SiO2) were strictly dependant to the differences in the annual runoff. A strong excess of N load in comparison to P load characterised all rivers, both in inorganic nutrient (DIN/PO4=37-418) and total (TN/TP=48-208) pools, particularly in the northern and eastern areas of the basin.The annual runoff showed significant oscillations for Po on multidecadal time scale, whereas a general decrease (−33%) was observed for the other N Adriatic rivers as the recent discharges were compared to those before the 1980s. During the dry years 2005-2007, a strong reduction of river water flows and nutrient loads was experienced by the N Adriatic ecosystem with respect to years characterised by medium-high regimes. An increased frequency of similar drought periods, due to ongoing climate changes or to a larger human usage of continental waters, would be easily able to significantly change the biogeochemistry of this basin.  相似文献   

17.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

18.
Distinction between active and legacy sources of nutrients is needed for effective reduction of waterborne nutrient loads and associated eutrophication. This study quantifies main typological differences in nutrient load behaviour versus water discharge for active and legacy sources. This quantitative typology is used for source attribution based on monitoring data for water discharge and concentrations of total nitrogen (TN) and total phosphorous (TP) from 37 catchments draining into the Baltic Sea along the coastline of Sweden over the period 2003–2013. Results indicate dominant legacy source contributions to the monitored loads of TN and TP in most (33 of the total 37) study catchments. Dominant active sources are indicated in 1 catchment for TN, and mixed sources are indicated in 3 catchments for TN, and 4 catchments for TP. The TN and TP concentration contributions are quantified to be overall higher from the legacy than the active sources. Legacy concentrations also correlate well with key indicators of human activity in the catchments, agricultural land share for TN (R2 = 0.65) and population density for TP (R2 = 0.56). Legacy-dominated nutrient concentrations also change more slowly than in catchments with dominant active or mixed sources. Various data-based results and indications converge in indicating legacy source contributions as largely dominant, mainly anthropogenic, and with near-zero average change trends in the present study of catchments draining into the Baltic Sea along the coastline of Sweden, as in other parts of the world. These convergent indications emphasize needs to identify and map the different types of sources in each catchment, and differentiate strategies and measures to target each source type for possible achievement of shorter- and longer-term goals of water quality improvement.  相似文献   

19.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Backwaters connected to large rivers retain nitrate and may play an important role in reducing downstream loading to coastal marine environments. A summer nitrogen (N) inflow-outflow budget was examined for a flow-regulated backwater of the upper Mississippi River in conjunction with laboratory estimates of sediment ammonium and nitrate fluxes, organic N mineralization, nitrification, and denitrification to provide further insight into N retention processes. External N loading was overwhelmingly dominated by nitrate and 54% of the input was retained (137 mg m−2 day−1). Ammonium and dissolved organic N were exported from the backwater (14 and 9 mg m−2 day−1, respectively). Nitrate influx to sediment increased as a function of increasing initial nitrate concentration in the overlying water. Rates were greater under anoxic versus oxic conditions. Ammonium effluxes from sediment were 26.7 and 50.6 mg m−2 day−1 under oxic and anoxic conditions, respectively. Since anoxia inhibited nitrification, the difference between ammonium anoxic–oxic fluxes approximated a nitrification rate of 29.1 mg m−2 day−1. Organic N mineralization was 64 mg m−2 day−1. Denitrification, estimated from regression relationships between oxic nitrate influx versus initial nitrate concentration and a summer lakewide mean nitrate concentration of 1.27 mg l−1, was 94 mg m−2 day−1. Denitrification was equivalent to only 57% of the retained nitrate, suggesting that another portion was assimilated by biota. The high sediment organic N mineralization and ammonium efflux rate coupled with the occurrence of ammonium export from the system suggested a possible link between biotic assimilation of nitrate, mineralization, and export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号