首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed magnetic measurements and geochemical analyses were performed on 114 sediment samples collected from the East Lake, Wuhan city, China, to establish a possible link between the enhanced concentration of anthropogenic magnetic particles and heavy metals with known sources. Relatively higher magnetic susceptibility values (mass-specific, χ, >150 × 10−8 m3 kg−1) were observed for samples near the pollution sources: e.g. the Wuhan Iron and Steel Company (WISC), the Qingshan Thermal Power Plant (QTPP), the banks (driveways) of the lake and near the sightseeing route of yachts on the lake. Moreover, χ is positively correlated to the concentration of Pb (correlation coefficient r = 0.682), but negatively or weakly correlated with both Zn and Cu. In contrast, anhysteretic remanent magnetization (ARM) is significantly correlated with these major heavy metals (r = 0.645 for Zn–ARM, 0.699 for Pb–ARM and 0.841 for Cu–ARM, respectively), which indicate that ARM serves a better indicator for the pollution of heavy metals in this lake. Thermomagnetic analysis combined with magnetic hysteresis measurements revealed that magnetites in the pseudo-single-domain/multidomain grain-size regions are dominant. Scanning electron microscopy and energy dispersive X-ray examinations of the magnetic extracts showed that these Fe-rich particles have different morphologies: orange-peel structure, hollow structure with adhered smaller particles, Zr-rich melted-like irregular particles, pear-shaped spherules and spherules with slick surfaces. These features are typical for particles produced by anthropogenic activities. Because of the genetic relationship between the environmental setting of the East Lake and the nearby pollution sources, this study suggests that in situ magnetic surveys are sensitive to evaluate the environmental pollution on the lake bottom.  相似文献   

2.
 An evaluation of the influence of channel processes (erosion, accumulation, processing of channel sediments) on the dispersal of heavy metals in bottom sediments was carried out in the channels of the Sztoła and Biała Przemsza rivers in Upper Silesia, Poland. These rivers receive waters from a Zn and Pb mine. Mine waters transport a large amount of fine-grained sediments contaminated with heavy metals. The polluted material is accumulated in these stream courses and mixed with nearly homogeneous sandy sediment derived from erosion of the river banks and bed. Because these alluvia are easily set in motion, the distribution of heavy metal concentration in the channel in fraction <1 mm reflects differences in physical processes of sedimentation in its cross-section. The minimal values in active channel and maximal in the near-bank zone are typical for those channel sections where heavy metals, present in a solid state, are transported as a suspended load (normally the largest part of a polluted river course). In short sections heavy metals associated with the grains of a large mass which has accumulated in the active channel are transported as a bed load and the typical distribution pattern is reversed (in fractions both <1 mm and <0.063 mm). Such regularities can be disturbed in localities where strong, turbulent flow or frequent eddying occur and Mn oxides and hydrooxides and associated elements precipitate. The smallest variation in heavy metal concentration in the homogenous, fine-grained bank sediments which are trapped by plants below water level is a feature which recommends these localities as being the most suitable for monitoring of river pollution. Received: 11 November 1997 · Accepted: 12 March 1998  相似文献   

3.
Two sediment cores (BO90/13b and BO90/17b) from Lake Constance were investigated by-spectrometry for210Pb,134Cs,137Cs,241Am,234Th, and other members of the238U decay chain. The sediments were dated using the constant-flux model for210Pb, and accumulation rates were determined. These range from 0.04 to 0.65g/cm 2/yr (BO90/13b) and 0.04 to 0.8g/cm 2/yr (BO90/17b), respectively. The mean accumulation rate amounts to 0.16g/cm 2/yr for both cores. The cores had already been dated by lamination counting and reconstruction of high-water events at the Limnological Institute at Constance, so that a very precise time scale was available. Both ages derived are in agreement within statistical error up to 1900, which means dating with the constant-flux model for210Pb was confirmed up to that age. The position of the maxima of bomb cesium and americium confirm the stratigraphic and210Pb datings. With241Am a further radioactive isotope is available, which can, due to the half-life of241Pu (t 1/2=14.4yr) be detected now by-spectrometry and can serve as an additional time indicator, the maximum being dated at 1963. By applying the various time scales, the depth profiles of stable lead and zinc of core BO90/13b were dated. Both heavy metals show a very significant maximum located beneath the layer of the maxima of bomb cesium and americium, showing that these maxima are older than those of the bomb isotopes. It is remarkable in this context that the maximum of zinc concentration occurs a little later than that of stable lead. Similar concentration profiles are observable in core BO90/17b and other, older sediment cores (CS6-CS10) on a transect across the lake. In contrast to a former assumption, the depth profile of stable lead in Lake Constance sediments does not reflect the anthropogenic gasoline lead emissions into the atmosphere for Germany, their maximum being dated at 1971.  相似文献   

4.
The studies presented explore post-depositional changes of zinc, cadmium, lead, manganese and 137Cs distribution in alluvial sediments accumulated in the upper Odra River valley in southern Poland. The rate of these changes was estimated by comparing metal and 137Cs distributions in four vertical alluvial profiles with a history of river pollution and sediment deposition. The untypical 137Cs distribution with peaks in the surface 40–60 cm and lower down, even at a depth of 2.5 m in strata deposited before the beginning of nuclear tests in 1954, indicates rapid post-depositional migration of this isotope from the surface and its retention in lower, less permeable layers. Moreover, the highest concentrations of lead, zinc and cadmium were found at a depth of 4 m in sediments accumulated in the mid-nineteenth century in spite of the growth of industrialization and the pollution of the Odra River with heavy metals until the end of the twentieth century. The post-depositional changes in heavy metals and 137Cs are rapid in comparison with the slow element migration usually observed in uninundated soils. This difference is explained by the frequent and easy infiltration of polluted river water into the gravelly and sandy sediments present in the profiles.  相似文献   

5.
 A new method of standardizing metal concentrations in sediments was tested on samples from Lake Miccosukee, a large karstic lake in north Florida. Metal concentrations were analyzed in 222 sediment samples from 26 cores representing 9 sampling sites in the lake. Measured sedimentation rates in the lake are low. Percent organic matter strongly increases upward in all the cores. The C/N ratio remains constant throughout all the samples, with a mean value of about 13, regardless of depth or location. All of the geochemical variables are at least approximately log-normally distributed; thus, log-log or semi-log scattergrams were used and the data were log-transformed before statistical calculations were performed. Some elements (Mn, Zn, Hg, Cu, and Ca) are primarily associated with the organic fraction; others (La, Cr, Sr, and Ba) are clearly related to the terrigenous fraction; others show affinities for both fractions. Consequently, no bivariate scattergrams or plots of ratio versus depth – commonly used for standardization by plotting or ratioing a reference element (such as Al) to an element of interest – were found to be adequate for standardization of this dataset. The best method for standardization was found to be one based on multivariate (trivariate) linear regression, using log Al and log C as the independent variables (reference elements representing terrigenous and organic fractions, respectively), and the log of the element of interest as the dependent variable. Residuals (deviations) from the best-fit linear surface were then plotted versus depth in the cores to accomplish the standardization. The results indicate that, with the possible exception of Mn at two sites, there is little evidence of anthropogenic input of trace elements to the lake, and most trace-element concentrations in the lake can be considered as valuable baseline information. A significant finding is that different and erroneous conclusions might have been reached if other standardization methods, not based on trivariate regression, had been employed. Received: 28 August 1997 · Accepted: 24 November 1997  相似文献   

6.
Three marine sediment cores from Osaka Bay were analyzed for 210Pb geochronology, heavy metal concentrations (Zn, Cu, and Pb) and stable lead isotope ratios (206Pb/207Pb) in order to reconstruct high-resolution heavy metal pollution history from 1900–2006. Anthropogenic metal accumulation in sediments peaked in 1970 in agreement with the high economic growth period in Japan. The comparison of temporal patterns of 206Pb/207Pb ratio with other areas of Japan suggested that the heavy metals, imported from several different countries during the periods of economic growth (1955 to 1973), are the main pollution source for the country. For the period 1970–2006, the sediment data reflect the result of stricter environmental regulations applied after the late 1960s. However, heavy metal concentrations in the surface sediments are still elevated to levels several times higher than the levels at the bottoms of the cores. Additionally, the lead isotope ratio does not show significant change after the 1980s. Secondary heavy metal pollution through the mixing of deeper polluted sediment appears to be the likely reason for the deterioration of present time submarine sediment environments. In conclusion, this study has demonstrated that it is difficult to recover over a period of several years the benthic quality of a bay, once it is heavily polluted.  相似文献   

7.
Sediment cores were collected from deep-water areas of Lake Chenghai, China in June 1997. The vertical profile of 137Cs activity gives reliable geochronological results. The results also indicate that sediment accumulation rates in deep-water areas of Lake Chenghai were relatively constant in recent decades, averaging 0.43 g cm− 2 y− 1, despite a variable organic carbon influx. 210Pbeq (= 226Ra) activity was relatively constant also, with an average value of 54.3 ± 3.2 Bq kg− 1. Vertical profiles of 210Pbex (= 210Pbtotal − 226Ra) decreased exponentially, resulting in somewhat lower sediment accumulation rates (0.3 g cm− 2 y− 1). These lower rates are likely less reliable, as the relatively large fluctuations in 210Pbex activities correlate closely to the organic carbon (Corg) content of the sediments. For example, the vertical profile of 210Pbex activity displays peaks at mass depths of 3.7-4.7 g cm− 2 (10-12 cm) and 10-11 g cm− 2(25-28 cm), similar to the maxima in the vertical profile of Corg. This phenomenon must be related to the delivery of particulate organic matter (POM) from the water to the sediments, or to watershed soil erosion. Since the mean atomic ratios of Horg / Corg and Corg / Norg in Lake Chenghai sediments are 5.5 and 7.0, respectively, indicating that POM was predominantly derived from the remains of authigenic algae, this eliminates watershed erosion rates as a primary control on lake sedimentation rates as resolved by 210Pbex. Sedimentation fluxes (F(Corg)) of particulate organic carbon since 1970 varied between 60 to 160 g m− 2 y− 1, and appeared to closely influence variations in 210Pbex concentrations. For example, sedimentation fluxes of 210Pbex (F(210Pbex)) showed maxima in the years 1972-1974 and 1986-1989, likely reflecting historical variations of lake biological productivity or carbon preservation.  相似文献   

8.
 The influence of sources of effluents on pollution of bottom sediments of the small Chechło River (23 km long, mean discharge 1.5 m3 s–1) in southern Poland was examined through analysis of heavy metals distribution in transverse and longitudinal cross sections. Underground waters from a Pb–Zn mine cause very high concentrations of Zn, Cd, and Pb in both fractions investigated (<1 mm and <0.063 mm) of sediments in the active channel zone, whereas sedimentation of huge amounts of suspended matter discharged from oil refinery cause concentrations of heavy metals in fine fractions rather uniform in cross sections. In the lowest reach, with relatively reduced contamination, the highest concentration both in fine and coarse fractions occurs close to the river banks and in the deepest points of the channel. The lowest concentrations have been found at the points of strongest reworking and accumulation of sandy material in the riverbed. Received: 25 April 1995 · Accepted: 11 September 1995  相似文献   

9.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

10.
Following previous studies on beach and dune sediments from the Espinho–Mondego Cape coastal sector, geochemical studies have been done on the same sediments aiming to unravel the lithological from the anthropogenic geochemical signal. 129 samples have been collected from 45 profiles, in beach and dune sediments. Total Fe, Cu, Pb, Zn, Mn, Cd, Co, Ni, Cr, Ca, Mg and Al concentrations were measured in the fine fractions of the sediments. The absence of relationship between the analysed heavy elements and Al and the exhibition of contents higher than the rocks outcropping in the hinterland, point to an additional source of heavy metals related to human activities. The available data allowed us to consider that inputs from Aveiro lagoon (natural and anthropogenic), Douro River and coastal erosion (by littoral drift or advective currents) are the main sources of heavy metals in this region.  相似文献   

11.
Heavy metal distribution patterns in river sediments aid in understanding the exogenic cycling of elements as well as in assessing the effect of anthropogenic influences. In India, the Subernarekha river flows over the Precambrian terrain of the Singhbhum craton in eastern India. The rocks are of an iron ore series and the primary rock types are schist and quartzite. One main tributary, the Kharkhai, flows through granite rocks and subsequently flows through the schist and quartzite layers. The Subernarekha flows through the East Singhbhum district, which is one of India’s industrialised areas known for ore mining, steel production, power generation, cement production and other related activities. Freshly deposited river sediments were collected upstream and downstream the industrial zone. Samples were collected from four locations and analysed in <63-μm sediment fraction for heavy metals including Zn, Pb, Cd and Cu by anodic stripping voltammetry. Enrichment of these elements over and above the local natural concentration level has been calculated and reported. Sediments of the present study are classified by Muller’s geo-accumulation index (I geo) and vary from element to element and with climatic seasons. During pre-monsoon period the maximum I geo value for Zn is moderately to highly polluted and for Cu and Pb is moderately polluted, respectively, based on the Muller’s standard. Anthropogenic, lithogenic or cumulative effects of both components are the main reasons for such variations in I geo values. The basic igneous rock layer through which the river flows or a seasonal rivulet that joins with the main river may be the primary source for lithogenic components.  相似文献   

12.
Ninety-two surface sediment samples were collected in Guanabara Bay, one of the most prominent urban bays in SE Brazil, to investigate the spatial distribution of anthropogenic pollutants. The concentrations of heavy metals, organic carbon and particle size were examined in all samples. Large spatial variations of heavy metals and particle size were observed. The highest concentrations of heavy metals were found in the muddy sediments from the north western region of the bay near the main outlets of the most polluted rivers, municipal waste drainage systems and one of the major oil refineries. Another anomalous concentration of metals was found adjacent to Rio de Janeiro Harbour. The heavy metal concentrations decrease to the northeast, due to intact rivers and the mangrove systems in this area, and to the south where the sand fraction and open-marine processes dominate. The geochemical normalization of metal data to Li or Al has also demonstrated that the anthropogenic input of heavy metals have altered the natural sediment heavy metal distribution.  相似文献   

13.
Heavy metals in sediments of the Tecate River, Mexico   总被引:1,自引:0,他引:1  
Ten sites along the Tecate River, Mexico were sampled to evaluate the cadmium, lead, nickel and chromium concentrations in sediments. The result shows contamination for cadmium in most of the sites, where two sites were class 4 (polluted to strongly polluted) according to geoaccumulation index proposed by Muller. Two sites were found polluted for all the heavy metals analyzed (Cr, Cd, Pb and Ni), indicating the effect of anthropogenic activities. A correlation between Ni and Cd concentration had been found indicating a common source. These metals are usually used in electroplating industry. The results of this study can be used for decision makers to prioritize measures to control the pollution for these metals.  相似文献   

14.
Heavy metals distribution in core sediments, different size fractions of bed sediments (>212 urn, 90-212 jam, 63–90 urn, 53–63 urn, < 53 urn), and suspended sediments (>30 urn, 20–30 m, 10–20 urn, 2–10 urn, <2 m) have been discussed. Pb, Zn, and Cr have been accumulating in recent years in the sediments. Si, Al, Fe, Ca, and Mg dominate the bed and suspended sediment composition. Metals show increasing concentrations in finer sediments. Applying multivariate analysis to sediment composition, metals have been grouped into different factors depending upon their source of origin. Chemical fractionation studies on suspended and bed sediments show Fe, Zn, Cu, and Pb are associated with the residual fraction and Mn with the exchangeable fraction.  相似文献   

15.
云蒙湖表层沉积物重金属分布特征及风险评价   总被引:1,自引:0,他引:1  
为了解云蒙湖表层沉积物中重金属的污染状况,选取云蒙湖沉积物中6种重金属(Cu、Zn、Pb、Cr、Cd、As)作为研究对象,测定并分析其在云蒙湖表层沉积物中的分布、来源及生态风险,以期为云蒙湖沉积物中重金属污染治理及饮用水安全保障提供依据。采用富集系数法、相关性分析及聚类分析对重金属来源进行分析,并选用富集系数法、地累积指数法和潜在生态危害指数法对重金属污染程度及潜在生态危害进行了评价。结果表明:云蒙湖表层沉积物中6种重金属Cu、Zn、Pb、Cr、Cd、As平均含量分别为20.9、73.1、23.1、62.0、0.4和4.5 mg/kg;与临沂市土壤背景比较,Cd、Zn和Cr的含量超过临沂市土壤背景值,Cd污染最严重。重金属来源分析结果显示:Cd受人类活动影响较大,可能与区域农业和林业施肥有关;Cu、Zn、Pb、Cr和 As这几种重金属以自然来源为主。综合富集系数法、地累积指数法和潜在生态危害指数法3种评价方法的结果得出,云蒙湖表层沉积物中Cd 为最主要的污染元素,且具有较强的生态危害。  相似文献   

16.
Reliable dating is an essential element of palaeoseismological studies, yet whilst a suite of geochronological methods can now provide late Quaternary age control it remains very difficult to date modern events (i.e., those occurring within the last 150 years). This is significant because the starting point for many palaeoseismological investigations is a modern surface-rupturing event, whose geological effects need to be disentangled in trench stratigraphies from palaeoseismic ruptures. Two dating methods which, in combination, can provide robust dating control in recently deposited sediments are the 210Pb and 137Cs dating methods. Here, we test the applicability of using 210Pb and 137Cs to date colluvial sediments exposed in three trenches excavated across an earthquake fault—the Eliki fault, Gulf of Corinth, Greece—which ruptured in an earthquake in 1861. The 210Pb and 137Cs profiles observed in these colluvial sequences are relatively erratic due to the mixed nature of the sediments, i.e., their deposition in an environment where the supply of slope sediments is driven by seasonal rainfall, causing non-uniform sediment accretion and sediment reworking. In one trench, however, 210Pb dating, corroborated by 137Cs dating, indicates that a proposed post-1861 surface colluvial unit has been deposited over the period 1950 AD–present (at a rate of ca. 9 mm/year), and overlies a significantly older unit (>120 years old). The dating control provided here by 210Pb and 137Cs dating corroborates the published interpretation of the trench stratigraphy, and refines the 14C-based estimated dates for the upper unit. At two other trenches 210Pb and 137Cs dating only provided minimum ages (based on the presence or absence of 210Pbexcess and 137Cs). Such approximate ages, however, may still useful in corroborating interpretations made using the trench stratigraphy, or, at sites which have long earthquake recurrence intervals, determining which earthquake event was responsible for a particular bed offset.  相似文献   

17.
Nador Lagoon sediments show low trace element concentrations, and, in relation to the lagoon geochemical baseline, only some anomalies for As, Cd, Cu and Pb in the NW of the lagoon deserve to be outstanding. The distribution of major, minor and trace elements in the lagoon allows a breakdown in four zones. Between “Beni Ensar” and “Atelouane” (zone A), a quite confined zone rich in organic matter and S, the most important trace-element anomalies (As, Cd, Co, Cu, Mn, Pb, Zn) were found, mainly around industry and old mining activities. In the surrounding of the city of Nador (zone B), the anomalies correspond to Mn, Cu and Zn. The coastal barrier and Kebdana channel (zone C) show moderately concentrations of Cd, Cr and Ni at specific sites. The less polluted area is the SE of the lagoon (zone D), with no outstanding anomaly. In lagoon sediments, metal bioavailability is very low. The metal partitioning patterns show that Cu, Pb and Zn present a low availability because they are bounded to the residual, non-mobile phases of the sediments. Only in some sites, the fraction was associated with organic matter, which could be liberated easily. Arsenic is concentrated in both the residual phases and the organic matter, the latter being more available. Cadmium is mainly concentrated in some samples in the interchangeable fraction, which could be considered as a potentially toxic element because it is easily released. Concerning the origin of these trace elements, those found in zone A correspond mostly to a natural source by weathering of mount Gourougou volcanic rocks (As, Co, Cu, Pb and Zn), and to an anthropogenic origin (Cd) owing to the presence of industry and old mines. In zone B, contributions of Cu and Zn enter the lagoon through soil weathering and river-borne, and as anthropogenic pollution from urban wastes. In zone C the most important pollutant is Cd deduced to be of anthropogenic origin from the close industry and intensive agriculture area. In spite of the intense socio-economic activities developed in the Nador Lagoon (agriculture, industry, fishing, tourism) trace element concentrations in the sediments are low and with scarce bioavailability. Only the NW sector is relativity polluted because of geogenic features.  相似文献   

18.
太湖沉积物中重金属的地球化学形态及特征分析   总被引:22,自引:2,他引:22  
用连续提取法分析了太湖沉积物5种重金属的地球化学形态,对地球化学形态的组成和地理特征进行了分析研究.重金属地球化学形态配分的共同特点是可交换态最低,残渣态最高.两种形态中Cd的可交换态最高,Cr的残渣态最高,可交换态最低.Cd的碳酸盐态较高,Cr的最低;Pb、Cd的Fe-Mn氧化态较高,Cu的偏低;Cu的有机态最高,Cd的最低;Zn的地球化学形态比例大都处于中间.地域上变化较大的元素是Cd和Cu,变化不明显的元素有Pb和Zn.化学成分中Fe2O3、MnO与重金属地球化学形态的相关性最好,TOC与Cu的形态相关系数最高.综合对比分析表明,太湖沉积物重金属的生物有效性以Cd为最高,其次为Pb.  相似文献   

19.
20.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号