首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adequate understanding of the nature and extent of response to stressors and resources by marine foundation plant species requires study of local adaptation and plasticity in traits. Analyses of variation among genotypes in growth and morphology and genotype × environment interactions are necessary for restoration in, for example, different combinations of tide, soil, and salinity regimes, and for assessing how foundation plant species will respond to global climate change. We conducted a field experiment to assess differences in responses among 86 half-sibling (same maternal tree) seedling families of the red mangrove (Rhizophora mangle) to different environmental conditions of hydrology imposed at low- and high-intertidal settings. At 3 years, Rhizophora survival and growth varied with maternal tree genotype, elevation, and genotype × elevation. This effect was independent of size of propagules at planting. Growth also differed among the five islands planted, a main effect that is a composite of a number of microenvironmental differences stemming from island size and shape, proximity to passes (and thus fetch), and island slope. Significant genotype × island interactions for some response variables further support the hypothesis that seedlings of different maternal genotypes can perform very differently under various suites of environmental conditions. Planted seedlings reproduced at an early age, and at 3 years there were differences in reproductive output among genotypes but not an overall mean difference between plants at low or high elevation. Whether our results show adaptation to local conditions or differences in plasticity among genotypes will require further study as the plants mature further to demonstrate fitness differences. However, either adaptation or plasticity provides a basis for maintenance of Rhizophora dominance over a wider range of environmental conditions and may be important for adaptation to conditions that will vary with global climate change.  相似文献   

2.
Native plants in the upland to high-marsh transition zone of southern California salt marshes are mostly perennials and therefore experience the abiotic stress of low soil moisture and high soil salinity throughout much of the year. However, many annual non-native plants reproduce during the brief period of reduced salinity and increased moisture during winter rainfall. We investigated the seasonal and spatial variation in vegetation and soil properties of the transition zone using an observational study. Next, we explored the potential for managing non-native plants using a field experiment with varying timing, quantity, and frequency of salt addition treatments. The observational study showed that the distribution of non-native plants is related to changes in soil salinity and soil moisture that accompany changes in elevation, although there are variations among species. In the field experiment, salt was effective at reducing non-native plant cover, but the timing of treatment was important. Although additional work is needed to refine the salt treatments, this work supports the idea that altering abiotic conditions can effectively reduce the presence of non-native species in the upland to high-marsh transition zone.  相似文献   

3.
A fundamental question in ecology is how biological interactions and biogeographic processes interact to determine the biodiversity of local sites. We quantified patterns of plant species diversity on transects across elevation at 59 salt marsh sites in Georgia and 49 sites in Texas. Although these regions have similar climates and floras, we anticipated that diversity might differ because of differences in tidal regime. Diversity was measured at global, regional, site, and plot scales to consider processes occurring at all levels. Species pools were similar between regions. Texas had greater diversity at the site and plot scales, suggesting that processes occurring at the site scale differed. The greater diversity of Texas sites and plots was associated with wider distributions of individual species across the marsh landscape and proportionally more middle marsh (a high diversity zone) and less low marsh (a low diversity zone) than in Georgia marshes. Preliminary data suggested that these differences were not due to differences in salinity regime or standing biomass between regions, leaving differences in tidal regime as the most plausible hypothesis accounting for differences in plant diversity. We speculate that the less-predictable tidal regime in Texas leads to temporal variation in abiotic conditions that limit the ability of any one species to competitively exclude others from particular marsh zones.  相似文献   

4.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

5.
Phenotypic variation within species can have community- and ecosystem-level effects. Such variation may be particularly important in ecosystem engineers, including many invasive species, because of the strong influence of these species on their surrounding communities and environment. We combined field surveys and glasshouse experiments to investigate phenotypic variation within the invasive common reed, Phragmites australis, among four estuarine source sites along the east coast of North America. Field surveys revealed variation in P. australis height and stem density among source sites. In a glasshouse environment, percent germination of P. australis seeds also varied across source sites. To test the degree to which phenotypic variation in P. australis reflected genetic or environmental differences, we conducted a glasshouse common garden experiment assessing the performance of P. australis seedlings from the four source sites across a salinity gradient. Populations maintained differences in morphology and growth in a common glasshouse environment, indicating a genetic component to the observed phenotypic variation. Despite this variation, experimentally increased porewater salinity consistently reduced P. australis stem density, height, and biomass. Differences in these morphological metrics are important because they are correlated with the impacts of invasive P. australis on the ecological communities it invades. Our results indicate that both colonization and spread of invasive P. australis will be dependent on the environmental and genetic context. Additional research on intraspecific variation in invasive species, particularly ecosystem engineers, will improve assessments of invasion impacts and guide management decisions in estuarine ecosystems.  相似文献   

6.
There is a need for research into bioindicators of stress in threatened plant communities such as coastal wetlands. Land subsidence, diversion of sediment, and salt-water intrusion produce stresses associated with waterlogging, elevated salinity, and nutrient depletion. Temporal and spatial environmental variation (soil redox potential, interstitial water salinity, pH, ammonium and phosphorus, and cation and trace metal concentrations) was analyzed near Lake de Cade, Louisiana, in a brackish marsh which is a mosaic of healthy plant communities interspersed with areas where wetland loss is occurring. Environmental variation was related to indicators of stress inSpartina patens, which included variables derived from the adenine nucleotide levels in plants, leaf spectral reflectance, leaf proline concentrations, and shoot elongation. In a comparison of burned and unburned sites, streamside and inland marsh, and along a salinity gradient, among-site differences were found in spectral reflectance and adenine-nucleotide-related indicators. Although it was difficult to relate a single causal environmental variable to the response of a specific indicator, spectral reflectance in the visible light range responded to salinity or to elements borne in seawater, and adenine-nucleotide indices were sensitive to nutrient availability. The ability of indicators to detect plant responses changed during the growing season, suggesting that they were responding to the changing importance of different environmental factors. In addition, some reflectance indicator responses occurred along salinity gradients when salinity differences were less than those that were found to have ecologically meaningful effects in greenhouse experiments. A multivariate numerical approach was used to relate environmental variation with indicator responses. We concluded that factors which in combination cause the degradation and loss of Louisiana wetlands produce environmental conditions that are only subtly different from those in vigorously growing marsh communities.  相似文献   

7.
Coastal dunes are well known for plant species zonation but less is known about species-specific responses to underlying environmental gradients. We investigated variation in morphological traits and tissue nutrient concentration in Uniola paniculata, along a shoreline-to-landward gradient (transects spanning from the dunes directly behind the high tide mark to 40–100 m inland) in the southeast USA. Several environmental factors decreased with distance from the shoreline (soil B, K, Mg, Na; salinity, pH, and sand accretion), and differences were most pronounced between the 10 m closest to the shoreline and the remainder of the transect. In the 10 m closest to the shoreline, 94% more sand accumulated, which was 31% more saline. Additionally, plants here were taller, contained higher aboveground tissue N and K, and a higher percentage tended to flower. This contrasts with patterns found in salt marshes and saline desert dunes, where plant size is often negatively correlated with salinity. During the 2 years following the planned study, storms washed out ≤25 m of the transects. Resampling of the remaining sites demonstrated that even after erosion of the dune profile, a higher percentage of the plants in the 10 m closest to the shoreline plants tended to flower, relative to populations located further from the shore. Our findings suggested that the environment and plant response in the shoreward 10 m can re-establish relatively quickly.  相似文献   

8.
We examined patterns of habitat function (plant species richness), productivity (plant aboveground biomass and total C), and nutrient stocks (N and P in aboveground plant biomass and soil) in tidal marshes of the Satilla, Altamaha, and Ogeechee Estuaries in Georgia, USA. We worked at two sites within each salinity zone (fresh, brackish, and saline) in each estuary, sampling a transect from the creekbank to the marsh platform. In total, 110 plant species were found. Site-scale and plot-scale species richness decreased from fresh to saline sites. Standing crop biomass and total carbon stocks were greatest at brackish sites, followed by freshwater then saline sites. Nitrogen stocks in plants and soil decreased across sites as salinity increased, while phosphorus stocks did not differ between fresh and brackish sites but were lowest at salty sites. These results generally support past speculation about ecosystem change across the estuarine gradient, emphasizing that ecosystem function in tidal wetlands changes sharply across the relatively short horizontal distance of the estuary. Changes in plant distribution patterns driven by global changes such as sea level rise, changing climates, or fresh water withdrawal are likely to have strong impacts on a variety of wetland functions and services.  相似文献   

9.
The dominant plant in Humboldt Bay salt marshes in Spartina densiflora, a species of cordgrass apparently introduced from South America. At several salt marshes and restoration sites around Humboldt Bay, distribution of this plant has increased significantly. We investigated the relative contributions of vegetative tiller production and seed germination to the establishment and expansion of S. densiflora. Lateral spread of plants surrounded by competitors were compared to areas without competing plant species. Plants growing in areas without competitors had significantly higher rates of vegetative expansion (p<0.0001). Viable seed production, germination rates, seedling survivorship, and growth of adult plants were measured in six salinity treatments. Approximately 1,977±80 viable seeds are produced per plant (0.25–0.5 m2). The number of germinating seeds was inversely related to increases in salinity. Salinity treatments between 19‰ and 35‰ produced significantly lower germination rates than salinities of 0–18‰ (p<0.0001). Seedling survivorship was 50% at ≤4‰ and 8–14% at ≥11‰. Lateral expansion of adult, greenhouse-grown plants occurred in all salinity treatments, with modest decreases in the highest salinity treatments (p<0.05). Our findings indicate that S. densiflora expands primarily by vegetative expansion, and lateral tillers are produced by throughout the year. Spartina densiflora produces prolific amounts of seed, but recruitment in mature salt marshes may be limited by competitors and higher salinities. At restoration sites, planting of native species such as Salicornia virginica, Distichlis spicata, or Jaumea carnosa may prevent monospecific stands of S. densiflora from developing.  相似文献   

10.
Coastal salt marsh ecosystems contain strong environmental gradients that are anticipated to influence the D/H ratios recorded in the leaf waxes of salt-tolerant plants. We characterized the molecular and hydrogen isotopic composition of alkanes in plant and sediment samples as well as the D/H ratios of environmental and plant waters across an elevation and inundation gradient in a southern Californian, coastal salt marsh. We sampled the dominant salt marsh plant species: Salicornia virginica, Arthrocnemum subterminale and Jamuea carnosa (all succulents), as well as Monanthochloe littoralis and Limonium californicum (nonsucculents). Plant xylem water hydrogen isotopic compositions indicate a shift in source waters from meteoric influences at upland sites (δD value −20‰) to seawater dominated values (0‰) at lowland areas. We found leaf water D enrichment relative to xylem water ranging from mean δD values of +54‰ (upland) to +28‰ (lowland), interpreted as a reduction of transpiration with increasing inundation time. This has the effect of increasing the net fractionation between source water and leaf wax product across the environmental gradient from mean values of −101‰ (upland) to −134‰ (lowland), with an attenuated signal recorded in the δD values of plant leaf wax n-alkanes (−122‰ to −136‰). These results constrain the hydrogen isotopic composition of salt marsh organic matter that may contribute to marine carbon budgets of the Santa Barbara Basin, and further indicate the potential for plant leaf waxes to resolve paleoenvironmental change, including sea level change, in sediment cores from salt marsh ecosystems.  相似文献   

11.
We examined the response of a salt marsh food web to increases in nutrients at 19 coastal sites in Georgia. Fertilization increased the nitrogen content of the two dominant plants, Spartina alterniflora and Juncus roemerianus, indicating that added nutrients were available to and taken up by both species. Fertilization increased Spartina cover, height, and biomass and Juncus height, but led to decreases in Juncus cover and biomass. Fertilization increased abundances of herbivores (grasshoppers) and herbivore damage, but had little effect on decomposers (fungi), and no effect on detritivores (snails). In the laboratory, herbivores and detritivores did not show a feeding preference for fertilized versus control plants of either species, nor did detritivores grow more rapidly on fertilized versus control plants, suggesting that changes in herbivore abundance in the field were driven more by plant size or appearance than by plant nutritional quality. Community patterns in control plots varied predictably among sites (i.e., 17 of 20 regression models examining variation in biological variables across sites were significant), but variation in the effects of fertilization across sites could not be easily predicted (i.e., only 6 of 20 models were significant). Natural variation among sites was typically similar or greater than impacts of fertilization when both were assessed using the coefficient of variation. Overall, these results suggest that eutrophication of salt marshes is likely to have stronger impacts on plants and herbivores than on decomposers and detritivores, and that impacts at any particular site might be hard to distinguish from natural variation among sites.  相似文献   

12.
To assess responses and recovery of salt marsh grass species, we manipulated external nutrient supply and removed shoots of Spartina alterniflora or Spartina patens from fertilized and control plots in a Massachusetts marsh. The pulse-and-recovery experiment included treatments for 5 years, and recovery for an additional 7 years. Responses of these potential competitors sensitively depended on local contingencies of elevation and nutrient dose, and, moreover, the differences in outcomes were emphasized at longer time scales. Local contingencies became manifest as differences in responsiveness and resiliency of the different grass species, with differing time courses and longer-term outcomes as to what species were present. These features might explain the diverse results obtained in shorter-term salt marsh experiments, and provide a view of the complex suite of species-specific and external environmental variables that may control competitive interactions in general.  相似文献   

13.
Use of estuaries and oceans by salmonids varies greatly, from no use in nonanadromous species, to movement toward the sea soon after hatching and emergence in some Pacific salmon. This variation is accompanied by large differences in the ontogeny of salinity tolerance among salmonids. Some species acquire increased salinity tolerance early in development, whereas others develop this characteristic much later, indicating there is a heterochrony (change in timing) in the development of salinity tolerance in salmonids. The basic physiological mechanisms for ion regulation in seawater (such as increased gill chloride cells, gill Na+,K+-ATPase activity, membrane permeability, and drinking rate) are common to all salmonids. What determines the differences in salinity tolerance among the salmonids is not the basic mechanisms for salt secretion but the environmental and ontogenetic control of these mechanisms. In salmonids such as pink and chum salmon that enter seawater soon after emergence, acclimation to seawater may be controlled largely by internal (ontogenetic) information. In smolting salmonids that acquire increased salinity tolerance 1–2 yr after hatching, photoperiod is the dominant environmental cue. In nonsmolting species that migrate 2–3 yr after hatching, salinity itself may be the primary stimulus for salt secretory mechanisms. Physiological changes triggered by developmental and environmental cues are mediated by endocrine factors. Treatments with cortisol, growth hormone, and insulin-like growth factor I have been shown to increase seawater tolerance of salmonids, whereas prolactin is inhibitory. Differences in developmental patterns of endocrine activity (such as secretion, binding proteins, and receptors) are hypothesized to be responsible for the differences in timing (heterochrony) of increased salinity tolerance among and within salmonid species.  相似文献   

14.
Top–down and bottom–up effects interact to structure communities, especially in salt marshes, which contain strong gradients in bottom–up drivers such as salinity and nutrients. How omnivorous consumers respond to variation in prey availability and plant quality is poorly understood. We used a mesocosm experiment to examine how salinity, nutrients, an omnivore (the katydid Orchelimum fidicinium) and an herbivore (the planthopper Prokelisia spp.) interacted to structure a simplified salt marsh food web based on the marsh grass Spartina alterniflora. Bottom–up effects were strong, with both salinity and nutrients decreasing leaf C/N and increasing Prokelisia abundance. Top–down effects on plants were also strong, with both the herbivore and the omnivore affecting S. alterniflora traits and growth, especially when nutrients or salt were added. In contrast, top–down control by Orchelimum of Prokelisia was independent of bottom–up conditions. Orchelimum grew best on a diet containing both Spartina and Prokelisia, and in contrast to a sympatric omnivorous crab, did not shift to an animal-based diet when prey were present, suggesting that it is constrained to consume a mixed diet. These results suggest that the trophic effects of omnivores depend on omnivore behavior, dietary constraints, and ability to suppress lower trophic levels, and that omnivorous katydids may play a previously unrecognized role in salt marsh food webs.  相似文献   

15.
Over the last decades, human activities have strongly affected ecosystems, with pervasive increases in nutrient loadings, abiotic stress, and altered herbivore pressure. The evaluation of how those environmental factors interact to influence plant–pathogen interactions under natural conditions becomes essential to fully understand the ecology of diseases and anticipate the possible effects of global change on natural and agricultural systems. In a SW Atlantic salt marsh, we performed a field factorial experiment to evaluate the effect of herbivory, salinity, and nutrient availability, three main limiting factors for salt marsh plant growth, on the infection of the fungus Claviceps purpurea (ergot) upon the cordgrass Spartina densiflora. Results show that herbivory has no effect but both nutrients and salinity increase fungal infection. The combined effect of salinity and nutrients is not additive but interactive. Salinity stress increases infection at ambient nutrient levels but in combination with fertilizer it buffers the higher infection produced by increased nutrient availability. Since both, nitrogen availability and salinity are factors predicted to globally increase due to human impact on ecosystems, this interaction between environmental factors and ergot infection can have strong effects on natural and productive agricultural systems.  相似文献   

16.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

17.
The literature often holds that, in salt marshes, surface elevation mediates the depth, duration, and frequency of submergence, thereby constituting the fundamental factor of plant species distribution and most other environmental variables. However, such an elevation-centered view has not been fully tested in a temporal sense; it is still unclear whether elevation is also a significant control on the rate of changes in species composition over time. In the Skallingen salt marsh of the Danish Wadden Sea, this question was evaluated along two elevation gradients where distinct physical and ecological processes operate: a gradient across a marsh platform and the other across creek bars. The rate of vegetation dynamics was measured as the Euclidean distance between two positions of the same plot, each representing two different points in time, in a two-dimensional diagram produced by nonmetric multidimensional scaling. Results showed that the rate of vegetation dynamics did not show any significant relationships with surface elevation across either marsh platform or tidal creeks (R 2 less than 0.04). This suggests that, other than elevation, some biological factors, such as the presence of keystone species and the initial species composition, control patterns of vegetation change in the marsh. This logic leads to a point that hydrological effects (e.g., inundation frequency and duration), often represented by surface elevation, are not necessarily overriding factors of rates of changes in species composition in backbarrier marshes like Skallingen. The conventional elevation-centered perspective may be an oversimplification of the biological and environmental variability of salt marshes.  相似文献   

18.
While many studies of non-native species have examined either soft-bottom or hard-bottom marine communities, including artificial structures at docks and marinas, formal comparisons across these habitat types are rare. The number of non-indigenous species (NIS) may differ among habitats, due to differences in species delivery (trade history) and susceptibility to invasions. In this study, we quantitatively compared NIS to native species richness and distribution and examined community similarity across hard-bottom and soft-sediment habitats in San Francisco Bay, California (USA). Benthic invertebrates were sampled using settlement panels (hard-bottom habitats) and sediment grabs (soft-bottom habitats) in 13 paired sites, including eight in higher salinity areas and five in lower salinity areas during 2 years. Mean NIS richness was greatest in hard-bottom habitat at high salinity, being significantly higher than each (a) native species at high salinity and (b) NIS richness at low salinity. In contrast, mean NIS richness in soft-bottom communities was not significantly different from native species richness in either high- or low-salinity waters, nor was there a difference in NIS richness between salinities. For hard-bottom communities, NIS represented an average of 79% of total species richness per sample at high salinity and 78% at low salinity, whereas the comparable values for soft bottom were 46 and 60%, respectively. On average, NIS occurred at a significantly higher frequency (percent of samples) than native species for hard-bottom habitats at both salinities, but this was not the case for soft-bottom habitats. Finally, NIS contributed significantly to the existing community structure (dissimilarity) across habitat types and salinities. Our results show that NIS richness and occurrence frequency is highest in hard-bottom and high-salinity habitat for this Bay but also that NIS contribute strongly to species richness and community structure across each habitat evaluated.  相似文献   

19.
不同演替阶段群落的环境条件有所不同,变化的环境因子驱使群落水平上功能性状和物种适应环境的生态对策改变,然而次生演替过程中群落功能性状和物种生态对策随演替时间的变化规律尚不清楚.本文以云南大黑山喀斯特地区弃耕后处于不同恢复阶段的天然次生林(3年,6年,20年,40年)和老龄林为研究对象,结合不同群落演替阶段的物种特征和群...  相似文献   

20.
Environmental characteristics were measured and recorded in the Skagit Marsh, a brackish intertidal marsh on Puget Sound, Washington. Four transects were placed perpendicular to a known gradient of increasing salinity which began with fresh water at the bank of one of the outlets of the Skagit River and reached a surface water salinity of 22‰ at a point alongshore 5 km north of the outlet. The environmental characteristics which were measured varied along gradients (soil texture, organic carbon in fines, soil column temperature, free soil water salinity) or had a patchy distribution (soil redox potential, soil macro-organic matter). Growth and production vary across the marsh. The maximum aboveground standing crop (1,742 g m?2 dry weight) was measured at a site with 0–4‰ free soil water salinity, dominated by the sedgeCarex lyngbyei. In more saline areas (8–12‰), the bulrushScirpus americanus was dominant and standing crop values dropped to a third of the maximum. Species performance varied in a complex manner as did the environment.C. lyngbyei had diminished growth and decreased standing crop in areas where salinity was higher.S. americanus was equally productive in low elevation, high salinity sites and in high elevation, low salinity sites. An increase in shoot density for dominant species occurred in saline areas as individual shoot weights and leaf areas decreased. Because species responded differently, environmental variation was magnified in the population and community responses of the marsh vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号