首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

2.
<正> 应用230Th/234U法研究洞穴沉积物年代已取得可靠结果,成功的为距今35万年以来的洞穴沉积物标上时标。近十几年来,为了开展老于35万年洞穴沉积物年代学研究,曾探讨应用234U/238U法和ESR法研究碳酸钙沉积物年代。目前已在234U/238U法研究洞穴沉积物年代方面取得成果。然而,由于样品条件不适合,洞穴采样困难以及样品初始234U/238U放射性比值确定存在问题和争论,这方面的研究尚待进一步深入。本文报道一个石笋五个不同生长层样品的234U/238U年代测定结果。试图对老于35万年的洞穴沉积物年龄研究,提供一个可用方法。并对相应时期的古气候环境进行探讨。   相似文献   

3.
岩石样品U0和ΔU的计算   总被引:1,自引:0,他引:1  
本文给岩石原始铀含量和铀变化系数以确切定义 ,并系统介绍了U0 和ΔU的计算方法。计算岩石原始铀含量 (U0 )有Th/U比值法和U Pb同位素法 ,后者又包括两阶段法和三阶段法 ;铀的变化系数 (ΔU)包括近代 (现代 )和成矿时铀的变化。这一手段或方法对研究地浸砂岩型铀矿成矿机理和成矿预测有重要意义。  相似文献   

4.
南京直立人的U/Th和U/Pa年代   总被引:2,自引:0,他引:2  
中国直立人化石的准确定年对于研究人类演化有着极为重要的意义。1993~1994年在南京汤山葫芦洞发现的两个直立人头盖骨化石和一枚牙化石被称为“南京直立人”。其中1号头盖骨化石之上的方解石钙板的U/Th年龄为53.3_(-1.2)~(+1.5)万年;但考虑到定年的准确性,则为53.3_(-3.0)~(+3.5)万年。其~(231)Pa/~(235)U活度比值为0.998±0.006。这表明“南京直立人”的年代应该大于50万年。与”南京直立人”伴生的动物牙化石U/Th年代为18.5~29.0万年;U/Pa年代为13.7~17.2万年。此外,对于同一颗牙化石,牙釉的年龄小于牙本质的年龄。同一样品的U/Pa年龄也显著小于其U/Th年龄。因此,牙化石的U摄取过程并不符合U早期摄取模式。多数牙化石分析点在~(234)U/~(238)U-~(230)Th/~(238)U图上落在位于U早期摄取和线性摄取模式曲线之间,指示牙化石的U摄取过程很可能介于上述两种模式之间。如果这一假设成立,那么牙化石的U/Th和U/Pa线性摄取模式年龄则为其年代的上限。因为不受U摄取过程~(234)U/~(238)U变化的影响,U/Pa线性摄取模式年龄比U/Th较为可靠。最小的U/Pa线性摄取模式年龄为1Ma,这是”南京直立人”上限年龄的估计。从定年结果看,”南京直立人”可能生活在海洋同位素(MIS)16阶段,但这不是最终结论。  相似文献   

5.
A mathematical model to calculate the234U/238U activity ratio (AR) in an aqueous phase in contact with rock/soil is presented. The model relies on the supply of238U by dissolution and that of234U by dissolution and preferential release from radiation damaged regions (recoil tracks). The model predicts that values of234U/238U AR>1 in the aqueous phase can be obtained only from weathering “virgin” surfaces. Thus, to account for the observed steady-state supply of234U excess to the oceans by the preferential leaching model, ‘virgin’ rock/soil surfaces would have to be continually exposed and weathered. The238U concentration and234U/238U AR in continental waters allow us to estimate the exposure rates of “virgin” rock/soil surfaces.  相似文献   

6.
A selective phase extraction procedure was developed for the identification of the significant phases of a typical deep soil profile sampled in the vicinity of the Ranger No. 1 uranium ore body, Alligator Rivers region, N.T., Australia. The significant phases were identified as amorphous iron oxide, crystalline iron oxide and a clay/quartz resistate. The distribution of 238U, 234U, 230Th and 226Ra between the phases was measured. The results indicated that the amorphous iron oxide phase is in adsorption/desorption equilibrium with the ground water. The crystalline iron oxide phase contains a chemical control, the kinetics of which are commensurate with or less than the half-life of 230Th (7.52 × 104 y). The clay/quartz resistate is enriched in 238U descendants in such a way that they are not readily accessible to the ground water.  相似文献   

7.
拉布拉多(Labrador)地处加拿大地盾东部边缘,其U矿化类型多样,但最重要的是赋存于变质火山岩和沉积岩内的矿化,主要分布于Makkovik省中心矿带区(CMB)的古元古代表壳岩和侵入岩中。该区矿化有岩浆型(伟晶岩和酸性火山岩)、后生--热液型(有些类似于Fe氧化物--Cu--Au(IOCG)型矿床)、剪切带型(可能是变质--交代成因)和砂质沉积岩中的层状矿化,但未发现典型的不整合型。根据其矿化类型,结合已发现矿床的成矿地质特征和矿化地质资料分析,得出该区的一些成矿远景区有较大的勘探潜力,圈定White Bear湖U矿勘查战略选区和Nash湖U矿勘查战略选区。  相似文献   

8.
Stilbite from Malmberget and Svappavara is part of hydrothermal mineral assemblages occupying regionally occurring open Palaeoproterozoic fractures in northern Sweden. At these locations, stilbite is characterized by Pbrad excess relative to U and by activity ratios of [234U]/[238U] > 1 and [230Th]/[238U] > 1. The activity disequilibrium requires a disturbance of the U-Th systematics within the last one million years. Leaching and infiltration experiments on Malmberget stilbite demonstrate: (i) preferential leaching in the order Pb >U >Th and uptake in the order Pb > U, and (ii) isotopic fractionation of U by preferential mobilization of 238U and 235U relative to 234U. Stepwise-leaching further indicates that the bulk of U is hosted in the channel sites of stilbite. The Th-U disequilibrium systematics observed in untreated Malmberget and Svappavara stilbite can be explained by: (1) addition of U with [234U]/[238U] > 1 from a fluid, or alternatively (2) loss of U from a two-component system, consisting of a component that is “open” or accessible and a component that is “closed” or inaccessible to mobilization. U addition requires a multistage history involving multiple gain or loss of U and/or Pb. In contrast, U loss does not necessarily require multistage processes but can also be explained by preferential removal of 238U (and 235U) relative to recoiled daughter isotopes such as 234U, 230Th, and 206Pb (and 207Pb) during a single event. Such a behavior could be obtained if the recoiled daughter isotopes of channel-sited uranium are implanted into the crystal lattice and, in such a way, become less mobile than their parent isotopes. This case implies an open-system behavior for ions in the channel sites and a closed-system behavior for ions in the silicate framework of stilbite. Each α-recoil directly or indirectly, i.e., through its recoil cascade, damages the silicate framework. Subsequent (continuous) low-temperature annealing of the damaged stilbite lattice could trap the recoiled daughter isotopes in the repaired crystal lattice or sealed-off channels. Such immobile recoiled material can, in part, represent the “closed” component of the system. This model can account for all observations regarding the Th-U-Pb systematics, including the Th-U disequilibrium systematics, the similarity in Th/U as deduced from Th-U disequilibrium and Pb isotope data, and the excess of radiogenic Pb (208Pb-parents also had been multiply recoiled). These two contrasting explanations involve either multistage or multicomponent systems. They do not permit the derivation of an accurate age.  相似文献   

9.
We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be <0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass-spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations.  相似文献   

10.
通过对我国西南地区3个洞穴9根大型石笋272个初始234U/238U数据的分析研究,发现石笋初始234U/238U值长尺度变化与海洋沉积SPECMAP曲线δ18O记录有一定的正相关关系,与北纬25°夏季太阳辐射能量变化曲线呈一定的负相关关系,石笋初始234U/238U值的变化在冰期时波动强烈,而在间冰期波动相对平缓,在间冰期和冰期(间冰阶和冰阶)转化阶段该值呈跳跃状态变化。末次冰期及全新世阶段石笋初始234U/238U变化记录了该时段内的BA暖期和YD突变冷事件;全新世8200 a BP、7200 a BP、5200 a BP、4200 a BP、2800 a BP、1400 a BP 发生的几次较强冷事件在石笋初始234U/238U值都有相应记录,并且和长尺度的变化规律一致,冷事件发生时石笋初始234U/238U值偏重,暖期偏轻。封闭系统形成的洞穴石笋初始234U/238U变化类似于同地区洞穴石笋的δ18O对气候变化的记录特征,在我国西南地区两者与夏季风变化的强弱呈现一种负相关的关系,洞穴石笋初始234U/238U值可以作为一个有用的古气候替代指标来研究古降水的变化。  相似文献   

11.
The 230Th/234U/238U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system 230Th/234U/238U ages is elevated 234U/238Uinitial values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have 234U/238Uinitial values close to seawater, there is a need for age validation. Redundant 230Th/234U/238U and 231Pa/235U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both 230Th/234U/238U and 231Pa/235U ages in fragments as small as 500 mg. We have obtained excellent agreement between 230Th/234U/238U and 231Pa/235U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the 230Th/234U/238U age accuracy.Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230Th/234U/238U and 231Pa/235U dates is generally better than ±0.3% and ±1.5%, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231Pa and from undetermined sources currently limit the 231Pa/235U age uncertainty to about ±2.5%. U isotope data and 230Th/234U/238U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory.  相似文献   

12.
Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation–reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6–1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution–precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400–300 Ma period during uplift and erosion of the Athabasca Basin when it was near the Equator and to have been still active during the last million years. A major kaolinisation event was caused by changes in the fluid circulation regime, reworking the primary uranium redox fronts and causing the redistribution of elements originally concentrated in the uranium-enriched meteoric-related redox fronts.  相似文献   

13.
14.
砂岩铀矿成矿过程与氧化还原分带: 铀系不平衡证据   总被引:3,自引:0,他引:3  
铀系不平衡技术被用来研究新疆伊犁盆地库捷尔太砂岩型铀矿床的氧化还原分带和成矿过程.取自该矿床的26个样品的铀、钍含量以及234 U/ 238U, 230 Th/ 234 U和230 Th/ 238U活度比值分别用ICP -MS和α能谱仪进行了测量.不同氧化还原带岩石的铀、钍含量和钍/铀比明显不同: 强氧化带岩石的U、Th含量和Th/U比分别为12.4 μg/g, 4.5 μg/g和0.48; 弱氧化带分别为20.4 μg/g, 5.0 μg/g和0.38; 过渡带(矿化带)分别为169.7μg/g, 4.7μg/g和0.07; 还原带(未蚀变带)分别为6.8μg/g, 3.7μg/g和0.87.其同位素特征亦有明显差异: 氧化带岩石234 U/ 238U大多大于1, 过渡带(矿化带)岩石部分大于或等于1, 部分小于1, 还原带(未蚀变带)岩石大多大于1; 氧化带岩石230 Th/ 234 U和230 Th/ 238U大多大于1, 过渡带(矿化带)岩石大多小于或等于1, 还原带(未蚀变带)岩石大多大于1.这可作为砂岩型铀矿床矿体定位的指示剂.铀系不平衡特征还示踪了该矿床的成矿作用过程.   相似文献   

15.
A simple method to determine the 234U238U ratio in water by α-spectrometry is presented. The thiocyanate complex of uranium is extracted from the water by anion exchange. After elution of the U from the resin it is further purified by extraction from nitrate medium into ether. The source for α-spectrometry is prepared by oxalate electrodeposition. The overall yield is 70%.  相似文献   

16.
内蒙古二连盆地、鄂尔多斯盆地典型含铀碳酸型盐湖水、岩两相234U/238U综合分析表明,碳酸型盐湖铀来源于大气降水和潜水对盐湖盆地周围中生代到现代富铀沉积物的溶滤、浸出,具有快速、近源物质来源特点。盐湖卤水和对应沉积物234U/238U值一般为0.8~1.2,湖卤水和潜卤水(晶间卤水)-岩两相中的铀处于沉积平衡状态。早白垩世~上新世含膏盐地层对比研究证实了富铀岩层234U/238U值随铀含量增大而减小,并趋近于1。室内盐湖水蒸发模拟实验发现残余卤水、沉积物234U/238U具有随蒸发程度增大逐渐减小的变化特征。盐湖现代沉积物物相研究发现铀主要以碳酸铀酰和吸附形式赋存在富含有机物和碎屑成分的含盐粘土沉积中,铀在盐类晶体中含量极少,仅存在于封闭水和结晶水中。卤水和沉积物ARu值是盐湖铀源及铀含量水平的指示标志之一。  相似文献   

17.
Time-resolved U(VI) laser fluorescence spectra (TRLFS) were recorded for a series of natural uranium-silicate minerals including boltwoodite, uranophane, soddyite, kasolite, sklodowskite, cuprosklodowskite, haiweeite, and weeksite, a synthetic boltwoodite, and four U(VI)-contaminated Hanford vadose zone sediments. Lowering the sample temperature from RT to ∼ 5.5 K significantly enhanced the fluorescence intensity and spectral resolution of both the minerals and sediments, offering improved possibilities for identifying uranyl species in environmental samples. At 5.5 K, all of the uranyl silicates showed unique, well-resolved fluorescence spectra. The symmetric O = U = O stretching frequency, as determined from the peak spacing of the vibronic bands in the emission spectra, were between 705 to 823 cm−1 for the uranyl silicates. These were lower than those reported for uranyl phosphate, carbonate, or oxy-hydroxides. The fluorescence emission spectra of all four sediment samples were similar to each other. Their spectra shifted minimally at different time delays or upon contact with basic Na/Ca-carbonate electrolyte solutions that dissolved up to 60% of the precipitated U(VI) pool. The well-resolved vibronic peaks in the fluorescence spectra of the sediments indicated that the major fluorescence species was a crystalline uranyl mineral phase, while the peak spacing of the vibronic bands pointed to the likely presence of uranyl silicate. Although an exact match was not found between the U(VI) fluorescence spectra of the sediments with that of any individual uranyl silicates, the major spectral characteristics indicated that the sediment U(VI) was a uranophane-type solid (uranophane, boltwoodite) or soddyite, as was concluded from microprobe, EXAFS, and solubility analyses.  相似文献   

18.
《Applied Geochemistry》2000,15(3):369-383
Surface water and peat in the northern Everglades have very low natural concentrations of U and are therefore sensitive to the addition of small amounts of U from anthropogenic sources such as fertilizer. Peat samples collected along a nutrient gradient in the northern Everglades have unusually high concentrations of U (>1 μg/g, dry basis) and also have a distinctive 234U/238U activity ratio (AR). AR values for U-enriched peat fall in the narrow range of AR values for commercial phosphate fertilizer (1.00±0.05). In contrast, AR values for low-U peat from background sites exceed 1.05. The spatial distribution of anomalous U concentration, and of fertilizer-like AR values in peat, parallel a previously documented pattern of P enrichment. These results strongly suggest that some of the U in nutrient-impacted peatlands is fertilizer-derived. Agricultural drainage water sampled in the northern Everglades has high concentrations of dissolved U (0.3–2.4 μg/l) compared to surface water from background sites (<0.1 μg/l). Measured AR values in drainage water (0.949–0.990) are also permissive of a fertilizer origin for the U and are different from AR values in surface water or peat at background sites (AR>1.05). Synoptic sampling of surface water along drainage canals indicate that Lake Okeechobee, and some drainage from agricultural fields, are sources of dissolved U, whereas wetlands farther downstream act as sinks for U. Historically cultivated agricultural soil has only a marginally elevated (+0.2 μg/g) average concentration of U compared to nearby uncultivated soil and incorporates only 20% of the U from an aqueous solution that was slurried with the soil. In contrast, a similar experiment with fresh Everglades peat indicated uptake of 90% of the added U. These experiments support the proposed removal of U from agricultural fields and concentration of U in downstream peatlands. The methodology of this study can be used to describe the behavior of fertilizer-derived U in other low-U environments.  相似文献   

19.
To increase the understanding of uranium transport in the environment and in the presence of steel corrosion products, the interaction of U(VI) with natural magnetite has been studied. Sorption studies have been carried out using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The XPS results clearly indicate the reduction of U(VI) to U(IV) on the surface of magnetite facilitated by electron transfer between the Fe and U, leading to a coupled oxidation of Fe(II) to Fe(III).  相似文献   

20.
Dissolved uranium concentration and 234U/238U activity ratio have been measured in two distinctly different Indian drainage systems: the Yamuna headwaters in the Himalaya and the Chambal river system in the plains to study the weathering and mobility of uranium in these watersheds. The dissolved uranium in the Chambal river system ranges from 0.2 to 1.74 μg L−1 during September (tail end of monsoon), whereas in the Yamuna river system, its concentration varies from 0.1 to 3.18 μg L−1 during October (post-monsoon) and from 0.09 to 3.61 μg L−1 in June (summer). In the Yamuna main stream, uranium is highest at its source and decreases steadily along its course, from 3.18 μg L−1 at Hanuman Chatti to 0.67 μg L−1 at Batamandi, at the base of the Himalaya. This decrease results mainly from mixing of the Yamuna mainstream with its tributaries, which are lower in uranium. The high concentration of uranium at Hanuman Chatti is derived from weathering of the Higher Himalayan Crystalline series (HHC) and associated accessary minerals, which may include uranium-mineralised zones. The 234U/238U activity ratios in the samples from the Chambal watershed are in the range of 1.15±0.05 to 1.67±0.04; whereas in the Yamuna the ratios vary from 0.95±0.03 to 1.56±0.07, during post-monsoon and from 0.98±0.01 to 1.30±0.03, during summer. The relatively high 234U/238U activity ratios in the Yamuna system are in its tributaries from the lower reaches viz., the Amlawa, Aglar, Bata, Tons and the Giri. It is estimated that ~9×103 and ~12 × 103 kg of dissolved uranium are transported annually from the Yamuna at Batamandi and the Chambal at Udi, respectively. This corresponds to uranium weathering rates of 0.9 and 0.09 kg U km−2 y−1 in the basins of the Yamuna and the Chambal headwaters. This study confirms that uranium weathering rate in the Himalaya is far in excess (by about an order of magnitude) of the global average value of ~0.08 kg U km−2 y−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号