首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the approximate general solution of the triple well, double oscillator non-linear dynamical system. This system is non-integrable and the approximate general solution is calculated by application of the Last Geometric Theorem of Poincaré (Birkhoff, 1913, 1925). The original problem, known as the Duffing one, is a 1 degree of freedom system that, besides the conservative force component, includes dumping and external forcing terms (see details in the web site: http://www.uncwil.edu/people/hermanr/chaos/ted/chaos.html). The problem considered here is a 2 degree of freedom, autonomous and conservative one, without dumping, and of axisymmetric potential. The space of permissible motions is scanned for identification of all solutions re-entering after from one to nine oscillations and the precise families of periodic solutions are computed, including their stability parameter, covering all cases with periods T corresponding to 4osc/T. Seven sub-domains of the space of solutions were investigated in detail by zooming, an operation that proved the possibility to advance the accuracy of the approximate general solution to the level permitted by the integration routine. The approximation of the general solution, although impressive, provides clear evidence of the complexity of the problem and the need to proceed to larger period families. Nevertheless, it allows prediction of the areas where chaos and order regions in the Poincaré surfaces of section are to be expected. Examples of such surfaces of sections, as well as of types of closed solutions, are given. Two peculiar points of the space of solutions were identified as crossing, or source points from which infinite families of periodic solutions emanate. The morphology and stability of solutions of the problem are studied and discussed.  相似文献   

2.
We analyze the stability of periodic solutions for Hill’s double-averaged problem by taking into account a central planet’s oblateness. They are generated by steady-state solutions that are stable in the linear approximation. By numerically calculating the monodromy matrix of variational equations, we plot its trace against the integral of the problem—an averaged perturbing function, for two model systems, [(Sun + Moon)-Earth-satellite] and (Sun-Uranus-satellite). We roughly estimate the ranges of values for the parameters of satellite orbits corresponding to periodic solutions of the evolutionary system that are stable in the linear approximation.  相似文献   

3.
This paper uses the results of second-order asymptotic matching in the restricted three body problem to establish the existence and first-order asymptotic approximation of various families of second species periodic solutions with one near-moon passage during a half-period. In this way, the existence and asymptotic approximation of second species solutions with any number of near-moon passages during a half-period can be established based on higher order asymptotic matching. Second species solutions with near-moon passages have not been studied numerically due to the difficult nature of this problem.This research was supported in part by the National Science Foundation under Grant GP42739 and in part by Northern Arizona University under a university research grant.  相似文献   

4.
Many modern space projects require the knowledge of orbits with certain properties. Most of these projects assume the motion of a space vehicle in the neighborhood of a celestial body, which in turn moves in the field of the Sun or another massive celestial body. A good approximation of this situation is Hill’s problem. This paper is devoted to the investigation of the families of spatial periodic solutions to the three-dimensional Hill’s problem. This problem is nonintegrable; therefore, periodic solutions are studied numerically. The Poincare theory of periodic solutions of the second kind is applied; either planar or vertical impact orbits are used as generating solutions.  相似文献   

5.
This paper shows that there exist two families of periodic solutions of the restrictedN-body problem which are close to large circular orbits of the Kepler problem. These solutions are shown to be of general elliptic type and hence are stable. If the restricted problem admits a symmetry, then there are symmetric periodic solutions which are close to large elliptic orbits of the Kepler problem.  相似文献   

6.
This paper establishes the existence and first order perturbation approximation of an infinite number of one-parameter families of symmetric periodic solutions of the restricted three body problem that are analytic continuations of symmetric periodic solutions of Hill's problem for small values of the mass ratio μ>0.  相似文献   

7.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

8.
Under the post-Newtonian approximation, the internal and external metrics of a rigidly rotating oblate spheroid filled by a uniform and incompressible perfect fluid are obtained. And the analytic solutions of post-Newtonian metric components are derived by using the series expansion in an ellipsoidal coordinate system. For this specific problem, there are only finite terms remaining in the series expansion, so the obtained results can be used to study particle motion under these metrics.  相似文献   

9.
We consider asymmetric periodic solutions of the double-averaged Hill problem by taking into account oblateness of the central planet. They are generated by steady-state solutions, which are stable in the linear approximation and correspond to satellite orbits orthogonal to the line of intersection of the planet’s equatorial plane with the orbital plane of a disturbing point. For two model systems [(Sun+Moon)-Earth-satellite] and [Sun-Uranus-satellite], these periodic solutions are numerically continued from a small vicinity of the equilibrium position. The results are illustrated by projecting the solutions onto the (pericenter argument-eccentricity) and (longitude-inclination) planes.  相似文献   

10.
11.
The probabilistic method of Sobolev and Case's method of normal mode expansion are combined to predict source-function distributions for radiative transfer in non-conservative, planeparallel atmospheres. The solutions obtained for semi-infinite atmospheres are exact and can be expressed in terms of functions and parameters associated with the non-conservative Milne problem. The predictions for finite atmospheres are approximate and are constructed from the semi-infinite solutions. Tabular values of the requisite functions and parameters are provided to facilitate rapid numerical evaluation of the solutions. Although the finite solutions corresponds to the zeroth-order (optically thick) approximation by Case's method, an assessment of the accuracy indicates that the results are useful for optical thicknesses as small as one or even less. The close connection between the results obtained and the method of point-direction gain of Van de Hulst is discussed.  相似文献   

12.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   

13.
In the quadratic approximation to the angular velocity of rotation, general solutions of the Rosen bimetric theory of gravitation are found which define the structure of the external, stationary axial-symmetric gravitational field.  相似文献   

14.
We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first-order solutions are deduced for an impulsive motion.  相似文献   

15.
A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found to the problem, for a distribution of the plasma parameters typical of the Earth's plasmasphere. The solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main components of the field of registered standing SMS waves are the plasma oscillations along magnetic field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which should result in precipitation of the background plasma particles. This may be accompanied by ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.  相似文献   

16.
The predictor-corrector method is described for numerically extending with respect to the parameters of the periodic solutions of a Lagrangian system, including recurrent solutions. The orbital stability in linear approximation is investigated simultaneously with its construction.The method is applied to the investigation of periodic motions, generated from Lagrangian solutions of the circular restricted three body problem. Small short-period motions are extended in the plane problem with respect to the parameters h, µ (h = energy constant, µ = mass ratio of the two doninant gravitators); small vertical oscillations are extended in the three-dimensional problem with respect to the parameters h, µ. For both problems in parameter's plane h, µ domaines of existince and stability of derived periodic motions are constructed, resonance curves of third and fourth orders are distinguished.  相似文献   

17.
A general approach to the solution of the perturbed oscillation problem for celestial bodies is considered. The solution sought describes unperturbed virial oscillations (zero approximation) affected by external perturbing effects. In the general case, these perturbations can be expressed by an arbitrary given function of time, Jacobi's function and its first derivative. Standard methods and modes of perturbation theory are used for solution of the problem.It is shown that while studying the evolution of a celestial body as a dissipative system in the framework of perturbed virial oscillations, the analytical expression for perturbing function can be derived, assuming the celestial body to be an oscillating electrical dipole emitting electromagnetic energy.The general covariant form of Jacobi's equation is derived and its spur is examined. It is shown that the scalar form of Jacobi's equation appears to be more universal than Newton's laws of motion from which it is derived.  相似文献   

18.
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.  相似文献   

19.
The work presented in paper I (Papadakis, K.E., Goudas, C.L.: Astrophys. Space Sci. (2006)) is expanded here to cover the evolution of the approximate general solution of the restricted problem covering symmetric and escape solutions for values of μ in the interval [0, 0.5]. The work is purely numerical, although the available rich theoretical background permits the assertions that most of the theoretical issues related to the numerical treatment of the problem are known. The prime objective of this work is to apply the ‘Last Geometric Theorem of Poincaré’ (Birkhoff, G.D.: Trans. Amer. Math. Soc. 14, 14 (1913); Poincaré, H.: Rend. Cir. Mat. Palermo 33, 375 (1912)) and compute dense sets of axisymmetric periodic family curves covering the initial conditions space of bounded motions for a discrete set of values of the basic parameter μ spread along the entire interval of permissible values. The results obtained for each value of μ, tested for completeness, constitute an approximation of the general solution of the problem related to symmetric motions. The approximate general solution of the same problem related to asymmetric solutions, also computable by application of the same theorem (Poincaré-Birkhoff) is left for a future paper. A secondary objective is identification-computation of the compact space of escape motions of the problem also for selected values of the mass parameter μ. We first present the approximate general solution for the integrable case μ = 0 and then the approximate solution for the nonintegrable case μ = 10−3. We then proceed to presenting the approximate general solutions for the cases μ = 0.1, 0.2, 0.3, 0.4, and 0.5, in all cases building them in four phases, namely, presenting for each value of μ, first all family curves of symmetric periodic solutions that re-enter after 1 oscillation, then adding to it successively, the family curves that re-enter after 2 to 10 oscillations, after 11 to 30 oscillations, after 31 to 50 oscillations and, finally, after 51 to 100 oscillations. We identify in these solutions, considered as functions of the mass parameter μ, and at μ = 0 two failures of continuity, namely: 1. Integrals of motion, exempting the energy one, cease to exist for any infinitesimal positive value of μ. 2. Appearance of a split into two separate sub-domains in the originally (for μ = 0) unique space of bounded motions. The computed approximations of the general solution for all values of μ appear to fulfill the ‘completeness’ criterion inside properly selected sub-domains of the domain of bounded motions in the (x, C) plane, which means that these sub-domains are filled countably densely by periodic family curves, which form a laminar flow-line pattern. The family curves in this pattern may, or may not, be intersected by a ‘basic’ family curve segment of order from 1 up to 3. The isolated points generating asymptotic solutions resemble ‘sink’ points toward which dense sets of periodic family curves spiral. The points in the compact domain in the (x, C) plane resting outside the domain of bounded motions (μ = 0), including the gap between the two large sub-domains (μ > 0) created by the aforementioned split, generate escape motions. The gap between the two large sub-domains of bounded motions grows wider for growing μ. Also, a number of compact gaps that generate escape motions exist within the body of the two sub-domains of bounded motions. The approximate general solutions computed include symmetric, heteroclinic, asymptotic, collision and escape solutions, thus constituting one component of the full approximate general solution of the problem, the second and final component being that of asymmetric solutions.  相似文献   

20.
Non-similarity solutions for the propagation of strong plane shock waves in optically-thin grey atmosphere are investigated. The density increases exponentially under low pressure. The shock moves with variable velocity and the total energy of the wave is not constant. Planck's diffusion approximation has been taken into account in the present problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号