首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have derived the angular correlation function of a sample of 2096 sources detected in the ROSAT All-Sky Survey (RASS) Bright Source Catalogue, in order to investigate the clustering properties of active galactic nuclei (AGN) in the local Universe. Our sample is constructed by rejecting all known stars, as well as extended X-ray sources. Areas with | b |<30° and declination δ <−30° are also rejected owing to the high or uncertain neutral hydrogen absorption. Cross-correlation of our sample with the Hamburg/RASS optical identification catalogue suggests that the vast majority of our sources are indeed AGN. A 4.1 σ correlation signal between 0° and 8° was detected with w ( θ <8°)=2.5±0.6×10−2. Assuming a two-point correlation function of the form w ( θ )=( θ θ 0)−0.8, we find θ 0=0062. Deprojection on three dimensions, using Limber's equation, yields a spatial correlation length of r 0≈6.0±1.6  h −1 Mpc. This is consistent with the AGN clustering results derived at higher redshifts in optical surveys and suggests a comoving model for the clustering evolution.  相似文献   

2.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

3.
We investigate the clustering of galaxies selected in the 3.6 μm band of the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular two-point correlation function is calculated for 11 samples with flux limits of S 3.6≥ 4–400 μJy, over an 8 deg2 field. The angular clustering strength is measured at >5σ significance at all flux limits, with amplitudes of A = (0.49–29) × 10−3 at 1°, for a power-law model, A θ−0.8. We estimate the redshift distributions of the samples using phenomological models, simulations and photometric redshifts, and so derive the spatial correlation lengths. We compare our results with the Galaxies In Cosmological Simulations (GalICS) models of galaxy evolution and with parametrized models of clustering evolution. The GalICS simulations are consistent with our angular correlation functions, but fail to match the spatial clustering inferred from the phenomological models or the photometric redshifts. We find that the uncertainties in the redshift distributions of our samples dominate the statistical errors in our estimates of the spatial clustering. At low redshifts (median z ≤ 0.5), the comoving correlation length is approximately constant,   r 0= 6.1 ± 0.5  h −1  Mpc, and then decreases with increasing redshift to a value of 2.9 ± 0.3  h −1 Mpc for the faintest sample, for which the median redshift is z ∼ 1. We suggest that this trend can be attributed to a decrease in the average galaxy and halo mass in the fainter flux-limited samples, corresponding to changes in the relative numbers of early- and late-type galaxies. However, we cannot rule out strong evolution of the correlation length over  0.5 < z < 1  .  相似文献   

4.
We use non-linear scaling relations (NSRs) to investigate the effects arising from the existence of negative correlations on the evolution of gravitational clustering in an expanding universe. It turns out that such anticorrelated regions have important dynamical effects on all scales. In particular, the mere existence of negative values for the linear two-point correlation function ξ¯ L over some range of scales starting from l = L 0 implies that the non-linear correlation function is bounded from above at all scales x < L 0 . This also results in the relation ξ¯   ∝  x −3 , at these scales, at late times, independent of the original form of the correlation function. Current observations do not rule out the existence of negative ξ¯ for 200  h −1 Mpc≲ ξ¯ ≲1000  h −1 Mpc; the present work may thus have relevance for the real Universe. The only assumption made in the analysis is the existence of NSR; the results are independent of the form of the NSR as well as of the stable clustering hypothesis.  相似文献   

5.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

6.
We have observed the Sunyaev–Zel'dovich (SZ) effect in a sample of five moderate-redshift clusters with the Ryle Telescope, and used them in conjunction with X-ray imaging and spectral data from ROSAT and ASCA to measure the Hubble constant. This sample was chosen with a strict X-ray flux limit using both the Bright Cluster Sample and the Northern ROSAT All-Sky Survey (RASS) cluster catalogues to be well above the surface brightness limit of the RASS, and hence to be unbiased with respect to the orientation of the cluster. This controls a major potential systematic effect in the SZ/X-ray method of measuring H 0. Taking the weighted geometric mean of the results and including the main sources of error, namely the noise in the SZ measurement, the uncertainty in the X-ray temperatures and the unknown ellipticity and substructure of the clusters, we find   H 0= 59+10−9 (random)+8−7(systematic) km s−1 Mpc−1  assuming a standard cold dark matter model with  ΩM= 1.0, ΩΛ= 0.0  or   H 0= 66+11−10 +9−8 km  s−1 Mpc−1  if  ΩM= 0.3, ΩΛ= 0.7  .  相似文献   

7.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

8.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

9.
We present a stable procedure for defining and measuring the two point angular autocorrelation function,   w (θ) =[θ/θ0( V )]−Γ  , of faint  (25 < V < 29)  , barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index  Γ≈ 2.5  and a  θ0= 10−0.1( V −25.8) arcsec  . This is very different from the values of  Γ≈ 0.7  and  θ0( r ) = 10−0.4( r −21.5) arcsec  associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.  相似文献   

10.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

11.
We combine Lyman-break colour selection with ultradeep (≳200 ks) Chandra X-ray imaging over a survey area of ∼0.35 deg2 to select high-redshift active galactic nuclei (AGN). Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at   z ∼ 3  . Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at   z = 1  , we find no evidence that the faint slope of the XLF flattens at high z , but we do find significant (factor ∼3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity   L *  . Our data therefore support models of luminosity-dependent density evolution between   z = 1  and   z = 3  . A sharp upturn in the the XLF is seen at the very lowest luminosities  ( L X≲ 1042.5 erg s−1)  , most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.  相似文献   

12.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

13.
This is the second paper of a series where we study the clustering of luminous red galaxies (LRG) in the recent spectroscopic Sloan Digital Sky Survey (SDSS) data release, DR6, which has 75 000 LRG covering over  1 Gpc3  h −3  for  0.15 < z < 0.47  . Here, we focus on modelling redshift-space distortions in  ξ(σ, π)  , the two-point correlation in separate line-of-sight and perpendicular directions, at small scales and in the line-of-sight. We show that a simple Kaiser model for the anisotropic two-point correlation function in redshift space, convolved with a distribution of random peculiar velocities with an exponential form, can describe well the correlation of LRG on all scales. We show that to describe with accuracy the so-called 'fingers-of-God' (FOG) elongations in the radial direction, it is necessary to model the scale dependence of both bias b and the pairwise rms peculiar velocity σ12 with the distance. We show how both quantities can be inferred from the  ξ(σ, π)  data. From   r ≃ 10 Mpc  h −1  to   r ≃ 1 Mpc  h −1  , both the bias and σ12 are shown to increase by a factor of 2: from   b = 2  to 4 and from  σ12= 400  to  800 km s−1  . The latter is in good agreement, within a 5 per cent accuracy in the recovered velocities, with direct velocity measurements in dark matter simulations with  Ωm= 0.25  and  σ8= 0.85  .  相似文献   

14.
We compare the large-scale galaxy clustering in the new Sloan Digital Sky Survey (SDSS) early data release (EDR) with the clustering in the APM Galaxy Survey. We cut out pixel maps (identical in size and shape) from the SDSS and APM data to allow a direct comparison of the clustering. Here we concentrate our analysis on an equatorial SDSS strip in the South Galactic Cap (EDR/SGC) of 166 deg2, 25 wide and 65° long . Only galaxies with Petrosian magnitudes  16.8< g '<19.8  are included to match the surface density of the  17< b J<20  APM pixel maps (median depth of ∼400  h −1 Mpc). Both the amplitude and the shape of the angular two-point function and variance turn out to be in very good agreement with the APM on scales smaller than 2° (or ≲15  h −1 Mpc). The three-point function and skewness are also in excellent agreement within a 90 per cent confidence level. On the one hand these results illustrate that the EDR data and SDSS software pipelines work well and are suitable to carry out analysis of large-scale clustering. On the other hand they confirm that large-scale clustering analysis is becoming 'repeatable' and therefore that our conclusions for structure formation models seem to stand on solid scientific grounds.  相似文献   

15.
We use the present observed number density of large X-ray clusters to constrain the amplitude of matter density perturbations induced by cosmic strings on the scale of 8  h −1 Mpc ( σ 8), in both open cosmologies and flat models with a non-zero cosmological constant. We find a slightly lower value of σ 8 than that obtained in the context of primordial Gaussian fluctuations generated during inflation. This lower normalization of σ 8 results from the mild non-Gaussianity on cluster scales, where the one-point probability distribution function is well approximated by a χ 2 distribution and thus has a longer tail than a Gaussian distribution. We also show that σ 8 normalized using cluster abundance is consistent with the COBE normalization.  相似文献   

16.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

17.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

18.
We analyse the spatial clustering properties of the ROSAT All-Sky Survey (RASS) 1 Bright Sample, an X-ray flux-limited catalogue of galaxy clusters selected from the southern part of the survey. The two-point correlation function ( r ) of the whole sample is well fitted (in an Einsteinde Sitter model) by the power law =( r r 0) , with and (95.4 per cent confidence level with one fitting parameter). We use the RASS 1 Bright Sample as a first application of a theoretical model that aims to predict the clustering properties of X-ray clusters in flux-limited surveys for different cosmological scenarios. The model uses the theoretical and empirical relations between mass, temperature and X-ray cluster luminosity, and fully accounts for the redshift evolution of the underlying dark matter clustering and cluster bias factor. The comparison between observational results and theoretical predictions shows that the Einsteinde Sitter models display too low a correlation length, while models with a matter density parameter 0m=0.3 (with or without a cosmological constant) are successful in reproducing the observed clustering. The dependence of the correlation length r 0 on the X-ray limiting flux and luminosity of the sample is generally consistent with the predictions of all our models. Quantitative agreement is however only reached for 0m=0.3 models. The model presented here can be reliably applied to future deeper X-ray cluster surveys: the study of the clustering properties will provide a useful complementary tool to the traditional cluster abundance analyses used to constrain the cosmological parameters.  相似文献   

19.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

20.
Cold collapse of a cluster composed of small identical clumps, each of which is in virial equilibrium, is considered. Since the clumps have no relative motion with respect to each other initially, the cluster collapses under its own gravity. At the first collapse of the cluster, most of the clumps are destroyed, but some survive. In order to find the condition for the clumps to survive, we made a systematic study in two-parameter space: the number of the clumps N c and the size of the clump r v . We obtained the condition N c ≫ 1 and n k  ≥ 1, where n k is related to r v and the initial radius of the cluster R ini through the relation R ini/ r v  = 2 N ( n k +5)/6c. A simple analytical argument supports the numerical result. This n k corresponds to the index of the power spectrum of the density fluctuation in the cosmological hierarchical clustering, and thus our result may suggest that in the systems smaller than 2/Ω h 2)Mpc, the first violent collapse is strong enough to sweep away all the substructures that exist before the collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号