首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Boulder 1 breccias are similar in composition to other Taurus-Littrow massif samples and therefore probably derived from the same source, undoubtedly the Serenitatis basin. However, they are substantially different in texture from other Apollo 17 massif rocks, indeed are very nearly unique among the rocks returned by all Apollo missions. The boulder is set apart by its content of dark, rounded inclusions or bombs, up to several tens of centimeters in dimension, consisting largely of very fine, angular, mineral debris, welded together by a lesser amount of extremely fine-grained material that appears to be devitrified glass. To account for these uncommon structures, a phase of the basinforming impact event is sought that would produce relatively small amounts of debris and deposit them on or near the basin rim. It is suggested that the components of the boulder might represent very early, high angle ejecta from the Serenitatis event, and that the dark breccia inclusions are accretional structures formed from a cloud of hot mineral debris, melt droplets, and vapor that was ejected at high angles from the impact point soon after penetration of the Serenitatis meteoroid. This small amount of early high-angle ejecta would have remained in ballistic trajectories while the main phase of crater excavation deposited much larger amounts of deeper-derived debris and melt-rock on the rim of the basin, after which the early ejecta was deposited as a cooler (~450°C) stratum on top. The matrix of this breccia gained its modest degree of coherency by thermal sintering as the capping stratum cooled. The boulder is a fragment of this layer, broken out and rolled to the foot of the South Massif ? 55 m.y. ago.  相似文献   

2.
Ejecta at North Ray crater (Apollo 16) sampled a unique section of the lunar highlands not accessible at most other landing sites and provide important constraints on the composition of late accreted materials. New data on multiple aliquots of four fragmental matrix breccias and a fragment‐laden melt breccia from this site display a variety of highly siderophile element patterns which may represent the signatures of volatile element‐depleted carbonaceous chondrite‐like material, primitive achondrite, differentiated metal, and an impactor component that cannot be related to known meteoritic material. The latter component is prevalent in these rocks besides characterized by depletions in Re and Os compared to Ir, Ru and Pt, chondritic Re/Os, and a gradual depletion of Pd and Au. The observed characteristics are more consistent with fractionations by nebular processes, like incomplete condensation or evaporation, than with lunar crustal processes, like partial melting or volatilization. The impactor signature preserved in these breccias may stem from primitive meteorites with a refractory element composition moderately different from known chondrites. The presence of distinct impactor components within the North Ray crater breccias together with observed correlations of characteristic element ratios (e.g., Re/Os, Ru/Pt, Pd/Ir) in different impact lithologies of four Apollo landing sites constrains physical mixing processes ranging from the scale of gram‐sized samples to the area covered by the Apollo missions.  相似文献   

3.
Three types of meteoritic material are found on the Moon: micrometeorites, ancien planetesimal debris from the ‘early intense bombardment’, and debris of recent, crater-forming projectiles. Their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distributed over the entire lunar surface, but is seen most clearly in mare soils. It has a primitive, C1-chondrite-like composition, and comprises 1-1.5% of mature soils. Apparently it represents cometary debris. The mean annual influx rate is 2.4 × 10?9 g cm?2 yr?1. It shows no detectable time variation or dependence on selenographic position. The ancient component is seen in highland breccias and soils more than 3.9 AE old. It has a fractionated composition, with volatiles depleted relative to siderophiles. The abundance pattern does not match that of any known meteorite class. At least two varieties exist (LN and DN, with Ir/Au, Re/Au 0.25-0.5 and > 0.5 the C1 value). Both seem to represent the debris of planetesimals that produced the mare basins and highland craters during the first 700 Myr of the Moon's history. It appears that the LN and DN objects impacted at less then 10 km s?1, had diameters less than 100 km, contained more than 15% Fe, and were not internally differentiated. Both were depleted in volatiles; the LN objects also in refractories (Ir, Re). This makes it unlikely that the LN bodies served as important building blocks of the Moon. The crater-forming component has remained elusive. Only a possible hint of this component has been seen, in ejecta from Dune Crater and Apollo 12 KREEP glasses of Copernican (?) origin.  相似文献   

4.
Secondary ion mass spectrometry (SIMS) U‐Pb ages of Ca‐phosphates from four texturally distinct breccia samples (72255, 76055, 76015, 76215) collected at the Apollo 17 landing site were obtained in an attempt to identify whether they represent a single or several impact event(s). The determined ages, combined with inferences from petrologic relationships, may indicate two or possibly three different impact events at 3920 ± 3 Ma, 3922 ± 5 Ma, and 3930 ± 5 Ma (all errors 2σ). Searching for possible sources of the breccias by calculating the continuous ejecta radii of impact basins and large craters as well as their expected ejecta thicknesses, we conclude that Nectaris, Crisium, Serenitatis, and Imbrium are likely candidates. If the previous interpretation that the micropoikilitic breccias collected at the North Massif represent Serenitatis ejecta is correct, then the average 207Pb/206Pb age of 3930 ± 5 Ma (2σ) dates the formation of the Serenitatis basin. The occurrence of zircon in the breccias sampled at the South Massif, which contain Ca‐phosphates yielding an age of 3922 ± 5 Ma (2σ), may indicate that the breccia originated from within the Procellarum KREEP terrane (PKT) and the Imbrium basin appears to be the only basin that could have sourced them. However, this interpretation implies that all basins suggested to fall stratigraphically between Serenitatis and Imbrium formed within a short (<11 Ma) time interval, highlighting serious contradictions between global stratigraphic constraints, sample interpretation, and chronological data. Alternatively, the slightly older age of the two micropoikilitic breccias may be a result of incomplete resetting of the U‐Pb system preserved in some phosphate grains. Based on the currently available data set this possibility cannot be excluded.  相似文献   

5.
The best estimate of indigenous lunar siderophiles comes from 29 pristine lunar rocks, characterized by low siderophile abundances, plutonic textures, and high age. Delano and Ringwood's blanket rejection of these rocks, on the contention that they are impact melts, is not justified by the petrologic evidence. Contrary to their claims, gold in highland breccias is largely meteoritic and is unaffected by fumarolic volcanism, as shown by its correlation with Ir and noncorrelation with fumarolic T1 (r=0.896 and 0.272). Delano and Ringwood's approach, involving subtraction of an H-chondrite meteoritic component from highland breccias, ignores the variation of Ir/Au ratios in modern and ancient meteorites, and hence leads to spurious excesses of Au, Ni, and volatiles, and in some cases to physically meaningless, negative residuals. Their excess volatiles in highland crust relative to mare basalts disappear when the highland composition is based on pristine lunar rocks rather than under-corrected breccias. Contrary to claims by Delano and Ringwood, the Ni/Co trend in Apollo 16 samples cannot be explained by an indigenous component rich in Ni (150–200 ppm) and Co (30–45ppm); mixing lines show that much lower Ni and Co contents are required (e.g., 7 ppm each).Chondrites and lunar highland breccias show essentially parallel fractionation trends for the siderophile-element ratios Re/Ir, Au/Ir, Ni/Ir, Ni/Pd, and Os/Ir. Because the chondritic ratios were established in the solar nebula, it appears that the lunar ratios also reflect nebular processes, and have not been modified by planetary processes.Properly derived abundances for the lunar highlands show large, systematic depletions relative to terrestrial oceanic tholeiites, by the following factors: Ge 270, Re 230, Sb170, Zn150, Au60, Tl 50, Ag 48, Ni 42, Se 12. It would seem that the resemblance to the Earth's mantle is not quite as striking as claimed by Delano and Ringwood.  相似文献   

6.
Boulder 1 at Station 2 is one of three boulders sampled by Apollo 17 at the base of the South Massif, which rises 2.3 km above the floor of a linear valley interpreted as a graben formed by deformation related to the southern Serenitatis impact. The boulders probably rolled from the upper part of the massif after emplacement of the light mantle. Orbital gravity data and photogeologic reinterpretation suggest that the Apollo 17 area is located approximately on the third ring of the southern Serenitatis basin, approximately 1.25 times larger than the analogous but fresher Orientale basin structure. The massif exposures are interpreted to represent the upper part of thick ejecta deposited by the southern Serenitatis impact near the rim of the transient cavity. Basin ring structure and the radial grabens that give the massifs definition were imposed on this ejecta at a slightly later stage in the basin-forming process. There is no clear-cut compositional, textural, or photogeologic evidence that Imbrium ejecta was collected at the Apollo 17 site.  相似文献   

7.
Abstract— Mafic, Th-rich impact-melt breccias, most of which are identified with the composition known as low-K Fra Mauro (LKFM), are the most common rock type in the nonmare regoliths of the Apollo lunar landing sites. The origin of mafic impact-melt breccias bears on many lunar problems: the nature of the late meteoroid bombardment (cataclysm); the spatial distribution of KREEP, both near the surface and at depth; the ages of the major basins; and the composition of the early crust of the nearside lunar highlands. Thus, it is crucial that the origin of mafic impact-melt breccias be accurately understood. Because of both intra- and intersite differences in compositions of mafic impact-melt breccia samples, apparent differences in crystallization age, and differences in siderophile-element ratios, previous studies have argued that either (1) most mafic impact-melt breccias are the products of several large craters local to the site at which they were found but that some are of basin origin or that (2) they are all from the Imbrium (Apollos 14 and 15), Nectaris (Apollo 16), and Serenitatis (Apollo 17) basins. Here, we reconsider the hypothesis that virtually all of the Th-rich, mafic impact-melt breccias from the Apollo missions are products of the Imbrium impact. Ejecta deposit modeling based on modern crater scaling indicates that the Imbrium event produced ejecta deposits that average hundreds of meters thick or more at all Apollo highland sites, which is thicker than some previous estimates. Substantial amounts of Imbrium ejecta should have been sampled at every Apollo highland site. We suggest that the mafic impact-melt breccias may be the principal form of those ejecta. The Imbrium projectile impacted into Th-rich material that we regard as part of a unique, mafic, lunar geochemical province we call the High-Th Oval Region. Based on the surface distribution of Th, only basins within the High-Th Oval Region excavated Th-rich material; the Th concentrations of the highlands as observed by the Apollo orbiting γ-ray experiments are consistent with the estimates from ejecta modeling. Of the younger basin-forming impacts, only Imbrium was large enough to produce the copious amount of melt required by the ubiquitous presence of mafic impact-melt breccias in the Apollo-sampled regolith. The High-Th Oval Region still may have been molten or hot at shallow depths ~4 Ga ago when the Imbrium projectile struck. We reason that compositional heterogeneity of ejected melt breccia is to be expected under these circumstances. We argue that siderophile-element “fingerprints” of mafic impact-melt breccias are not inconsistent with production of all common types by a single projectile. We suggest that the narrow range of ages of 3.7–4.0 Ga for all successfully dated mafic impact-melt breccias may reflect a single event whose age is difficult to measure precisely, rather than a number of discrete impact events closely spaced in time, such that reported age variations among mafic impact-melt breccias reflect the ability to measure 40Ar/39Ar ages with greater precision than the accuracy with which measured portions of mafic impact-melt breccias have recorded the time of their formation.  相似文献   

8.
Abstract— Seven large (10 g) impact melt rock samples from boreholes from the Boltysh impact crater (Ukraine) and six samples from the East Clearwater crater (Canada) were analyzed for Os, Ir, Ru, Rh, Pd, Re and Au by the nickel sulfide technique in combination with neutron activation. Earlier analyses of Clearwater East impact melt rocks have shown that they are strongly enriched in Ir, Os, Pd and Re. In this work, I confirm earlier findings and demonstrate similarly high enrichments of Rh and Ru. The average Os/Ir, Ru/Ir, Pd/Ir, Rh/Ir and Ru/Rh ratios of the melt rock samples from Clearwater East are CI-chondritic and yield an average Ir content of 25.2 ± 6.5 ng/g relative to an average upper crust concentration of 0.03 ± 0.02 ng/g Ir. The amount of meteoritic component corresponds to 4 to 7% of a nominal CI component for Clearwater East. The impact melt rock samples from a bore hole from Boltysh are low in Ir with an average of 0.2 ± 0.1 ng/g. The CI-normalized abundances increase from the refractory to the more volatile siderophile elements (Os < Ir < Ru < Rh ~ Pd ~ Au ~ Ni ~ Co). Because of the low Ir anomaly and uncertainties in making corrections (correlations are weak) for indigenous siderophile elements, no clear projectile assignment can be made.  相似文献   

9.
Boulder 1, Station 2, Apollo 17 is a stratified boulder containing dark clasts and dark-rimmed light clasts set in a light-gray friable matrix. The gray to black clasts (GCBx and BCBx) are multigenerational, competent, high-grade metamorphic, and partially melted breccias. They contain a diverse suite of lithic clasts which are mainly ANT varieties, but include granites, basaltic-textured olivine basalts, troctolitic and spinel troctolitic basalts, and unusual lithologies such as KREEP norite, ilmenite (KREEP) microgabbro, and the Civet Cat norite, which is believed to be a plutonic differentiate. The GCBxs and BCBxs are variable in composition, averaging a moderately KREEPy olivine norite. The matrix consists of mineral fragments derived from the observed lithologies plus variable amounts of a component, unobserved as a clast-type, that approximates a KREEP basalt in composition, as well as mineral fragments of unknown derivation. The high-temperature GCBxs cooled substantially before their incorporation into the friable matrix of Boulder 1. The light friable matrix (LFBx) is texturally distinct from the competent breccia clasts and, apart from the abundant ANT clasts, contains clasts of a KREEPy basalt that is not observed in the competent breccias. The LFBx lacks such lithologies as the granites and the Civet Cat norite observed in the competent breccias and in detail is a distinct chemical as well as textural entity. We interpret the LFBx matrix as Serenitatis ejecta deposited in the South Massif, and the GCBx clasts as remnants of an ejecta blanket produced by an earlier impact. The source terrain for the Serenitatis impact consisted of the competent breccias, crustal ANT lithologies, and the KREEPy basalts, attesting to substantial lunar activity prior to the impact. The age of the older breccias suggests that the Serenitatis event is younger than 4.01±0.03 b.y.  相似文献   

10.
New topographic data allow a reassessment of the ring structure of the Serenitatis basin and correlation with the younger Orientale basin. The northern Serenitatis basin is smaller and less well preserved than the southern Serenitatis basin. Three major rings of the main (southern) Serenitatis basin are mapped: ring 1, Linné ring, outlined by mare ridges, average diameter 420 km; ring 2, Haemus ring, outlined by basin-facing scarps and massifs with crenulated borders, 610 km; ring 3, Vitruvius ring, outlined by basin-facing linear scarps and massifs, 880 km. Ring 1 corresponds to the inner Rook Mountain ring of Orientale, ring 2 with the outer Rook ring, and ring 3 with the Cordillera Mountain ring. These ring identifications and assignments indicate that the Serenitatis basin is essentially the same size as the Orientale basin, rather than much larger, as previously proposed. The Apollo 17 site lies near the second ring, which is interpreted as the rim of the transient cavity. Apollo 15 lies at the junction of the Serenitatis and Imbrium third rings; Serenitatis ejecta should be present in significant amounts at the Apollo 15 site. The new reconstruction indicates that portions of the Serenitatis basin are better preserved than previously thought, consistent with recent stratigraphic and sample studies that suggest an age for Serenitatis which is older than, but close to, the time of formation of the Imbrium basin.  相似文献   

11.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

12.
Correlations among the trace and minor element pairs Cl and Br, Cl and P2O5, and Ru and Os, present in parent igneous rocks, generally survived the processes of boulder breccia formation. Fractions of the Cl, Br, and Hg that are mobilized by water leaching and/or volatilization at moderate temperatures (?450°C) place constraints on the thermal history of Boulder 1 and its component breccias. Since, and possibly during, consolidation, the boulder has probably not been subjected to temperatures of ?450°C. The parent rocks of the Apollo 17 boulder and breccia samples studied could have been derived from two initial magmas. Boulder 1, Station 2 gray competent breccias 72255 and 72275 Clast #2 appear to be genetically unrelated to gray competent breccia and anorthositic material 72215, or to light friable breccia 72275; they do appear to be related to samples 72395 (Boulder 2) and 76315 (Station 6 boulder). Vapor clouds from apparently external sources permeated the source regions of the boulders.  相似文献   

13.
Twenty-seven samples of matrix and clast materials from Boulder 1 at Station 2, Apollo 17 have been analyzed for major and trace elements as part of the study of this boulder by Consortium Indomitabile. Both unusual and common types of material have been characterized. Gray and black competent breccia (GCBx and BCBx) and anorthositic breccia (AnBx) have compositions which are common at the Apollo 17 site and were common at the site of boulder formation. Light friable breccias (LFBx) have compositions which are not found at the Apollo 17 site other than in the boulder. Pigeonite basalt is a new type of lunar rock and has characteristics that would be expected of a highland volcanic rock. It is associated with LFBx material, and like LFBx material it is exotic to the Apollo 17 site. Coarse norite is an old primitive rock which is no longer (if ever) found as millimeter fragments at the Apollo 17 site. It was, however, present as millimeter fragments associated with GCBx and BCBx materials at the site and time of boulder formation. Therefore the boulder-forming process combined materials from at least two different localities or vertical strata; at least one of these (LFBx) has not been previously sampled and analyzed.  相似文献   

14.
Previous age estimates of the Imbrium impact range from 3770 to 3920 Ma, with the latter being the most commonly accepted age of this basin‐forming event. The occurrence of Ca‐phosphates in Apollo 14 breccias, interpreted to represent ejecta formed by this impact, provides a new opportunity to date the Imbrium event as well as refining the impact history of the Moon. We present new precise U‐Pb analyses of Ca‐phosphates from impact breccia sample 14311 that are concordant and give a reliable weighted average age of 3938 ± 4 Ma (2σ). Comparison with previously published U‐Pb data on phosphate from Apollo 14 samples indicate that all ages are statistically similar and suggest phosphates could have been formed by the same impact at 3934 Ma ± 3 Ma (2σ). However, this age is older than the 3770 to 3920 Ma range determined for other samples and also interpreted as formed during the Imbrium impact. This suggests that several impacts occurred during a 20–30 Ma period around 3900 Ma and formed breccias sampled by the Apollo missions.  相似文献   

15.
Abstract— We report secondary ion mass spectrometry (SIMS) U‐Pb analyses of zircon and apatite from four breccia samples from the Apollo 14 landing site. The zircon and apatite grains occur as cogenetic minerals in lithic clasts in two of the breccias and as unrelated mineral clasts in the matrices of the other two. SIMS U‐Pb analyses show that the ages of zircon grains range from 4023 ± 24 Ma to 4342 ± 5 Ma, whereas all apatite grains define an isochron corresponding to an age of 3926 ± 3 Ma. The disparity in the ages of cogenetic apatite and zircon demonstrates that the apatite U‐Pb systems have been completely reset at 3926 ± 3 Ma, whereas the U‐Pb system of zircon has not been noticeably disturbed at this time. The apatite U‐Pb age is slightly older than the ages determined by other methods on Apollo 14 materials highlighting need to reconcile decay constants used for the U‐Pb, Ar‐Ar and Rb‐Sr systems. We interpret the apatite age as a time of formation of the Fra Mauro Formation. If the interpretation of this Formation as an Imbrium ejecta is correct, apatite also determines the timing of Imbrium impact. The contrast in the Pb loss behavior of apatite and zircon places constraints on the temperature history of the Apollo 14 breccias and we estimate, from the experimentally determined Pb diffusion constants and an approximation of the original depth of the excavated samples in the Fra Mauro Formation, that the breccias experienced an initial temperature of about 1300–1100 °C, but cooled within the first five to ten years.  相似文献   

16.
It appears possible to establish a preliminary geological model for the origin and evolution of the breccias of Boulder 1 at Station 2 in the Valley of Taurus-Littrow based on firm and probable geological constraints. The crystallization of plagioclase and other ANT-suite phases now present as clasts appears to have occurred in the lunar crust about 4.5 b.y. ago during the ‘melted shell stage’ of lunar history as that history is presently modeled. The original rocks containing these phases, which now make up the gray competent breccias of Boulder 1, were greatly modified by impact processes during the ‘cratered highland stage’ and the early part of the ‘large basin stage’, up to about 4.0 b.y. ago. About 4.0 b.y. ago, pigeonite basalts with KREEP affinities appear to have been intruded into the pre-Serenitatis crust from which the light friable breccias of Boulder 1 were later derived. During the large basin stage, three major dynamic events profoundly influenced the present character of the Boulder 1 materials. These events probably occurred as follows: (1) formation of gray competent breccia containing ANT-suite clasts in the hot ejecta blanket of an old large basin event, such as Tranquillitatis, that took place about 4.0 b.y. ago; (2) rebrecciation and redeposition of the gray competent breccia, mixed with light friable breccia and pigeonite basalt, in a relatively cool ejecta deposit, possibly produced by the northern Serenitatis event; (3) uplift and exposure of the Boulder 1 materials in the South Massif by the southern Serenitatis event about 3.90 b.y. ago.  相似文献   

17.
Rare gas isotopic analyses have been performed on both pile-irradiated and unirradiated samples from Boulder 1, Station 2. Two samples from rock 72255, the Civet Cat clast and a sample of adjacent breccia, have concordant40Ar-39 Ar ages of 3.99±0.03 b.y. and 4.01±0.03 b.y., respectively. Several samples from rock 72275 have complex thermal release patterns with no datable features, but an intermediate-temperature plateau from the dark rim material of the Marble Cake clast yields an age of 3.99±0.03 b.y. - indistinguishable from the age of rock 72255. We regard these ages as upper limits on the time of the Serenitatis basin-forming event. The absence of fossil solar-wind trapped gases in the breccia samples implies that a prior existence for the boulder as near-surface regolith material can be regarded as extremely unlikely. Instead, the small trapped rare-gas components have isotopic and elemental compositions diagnostic of the terrestrial-type trapped component which has previously been identified in several Apollo 16 breccias and in rock 14321. Excess fission Xe is found in all Boulder 1 samples in approximately 1:1 proportions with Xe from spontaneous fission of238U. This excess fission Xe is attributed to spontaneous fission of244Puin situ. Cosmic-ray exposure ages for samples from rocks 72215 and 72255 are concordant, with mean81Kr-Kr exposure ages of 41.4±1.4 m.y. and 44.1±3.3 m.y., respectively. However a distinctly different81Kr-Kr exposure age of 52.5±1.4 m.y. is obtained for samples from rock 72275. A two-stage exposure model is developed to account for this discordance and for the remaining cosmogenic rare-gas data. The first stage was initiated at least 55 m.y. ago, probably as a result of the excavation of the boulder source-crop. A discrete change in shielding depths ~ 35 m.y. ago probably corresponds to the dislodgement of Boulder 1 from the South Massif and emplacement in its present position.  相似文献   

18.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

19.
Abstract— Approximately 100 m of impactites were retrieved from the ICDP borehole Yaxcopoil‐1 (Yax‐1), located ~60 km south‐southwest from the center of the Chicxulub impact crater on the Yucatán Peninsula of Mexico. Here, we characterize and discuss this impact breccia interval according to its geochemical characteristics. Chemical analysis of samples from all five recognized breccia units reveals that the impactites are of heterogeneous composition with regard to both major and trace elements at the single sample (8–16 cm3) scale. This is primarily due to a strong mixing relationship between carbonate and silicate fractions. However, averaged compositions for suevitic units 1 to 3 are similar, and the silicate fraction (after removal of the carbonate component) indicates thorough mixing and homogenization. Analysis of the green melt breccia horizon, unit 4, indicates that it contains a distinct mafic component. Large brown melt particles (in units 2, 3, and 4) represent a mixture of feldspathic and mafic components, with high CaO abundances. Unit 5 shows the greatest compositional diversity, with highly variable abundances of SiO2, CaO, and MgO. Inter‐sample heterogeneity is the result of small sample size combined with inherent heterogeneous lithological compositions, highly variable particle size of melt and lithic components, and post‐depositional alteration. In contrast to samples from the Y6 borehole from closer to the center of the structure, Yax‐1 impactites have a strong carbonate component. Elevated loss on ignition, Rb, and Cs contents in the upper two impactite units indicate strong interaction with seawater. The contents of the siderophile elements, including Ni, Co, Ir, and Cr, do not indicate the presence of a significant extraterrestrial component in the Yax‐1 impactites.  相似文献   

20.
Abstract— We have analyzed small, ballistically dispersed melt samples in the form of aerodynamically shaped spheres, dumbbells, teardrops, etc., from Wabar Crater, Saudi Arabia, and have compared these to our previous study of the more massive, black and white melt specimens. The smaller melt samples differ from the more massive melts in that they are petrographically and chemically more homogeneous, possess fewer, more diffuse schlieren and contain much less clastic detritus. These observations suggest higher peak temperatures for the smaller melt samples than for the massive black and white melts which represent Wabar's major melt-zone. Analyses of the Wabar and Nejed (paired with Wabar) meteorites permit detailed comparison of the unaltered projectile with impactor residues in the melts. Siderophile element concentrations indicate that the small glass beads commonly contain > 10% meteoritic component, compared to < 5% for the massive black and white melts. One glass bead was found to contain ~ 17% meteoritic component. Based on models for melt production during cratering, we deduce that more meteoritic material was mixed with the upper stratigraphic horizons of Wabar's melt zone than with the lower parts. Siderophile elements in all Wabar melt specimens are fractionated relative to the Wabar-Nejed meteorite and have Fe/Ni ratios up to ~ 1.8 times that of Wabar-Nejed for the most siderophile element-rich glasses. The abundance sequence of siderophiles in the melts relative to the projectile is Fe ? Co > Ni ? Ir ? As » Au. Although this sequence seems incompatible with simple vapor fractionation of either elements or oxides, we believe that a complex vapor fractionation process most likely produced the observed siderophile element abundances. Our sample suite should be representative of all materials found in and around the Wabar structure, and we conclude that substantial quantities of the projectile were lost to the atmosphere, most likely as vapor. No fractionation of lithophile elements is observed in the glasses relative to the target rocks. Although fractionation of the impactor must have occurred prior to intimate mixing of projectile and target, details of the actual fractionation mechanism(s) remain poorly understood. The results of this study indicate that caution is necessary when attempting to define impactor types and masses from compositional data for impact melts from other craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号