首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous air leakage from ground mining-induced cracks is a significant cause of coal spontaneous combustion, low oxygen at the working face and other disasters in shallow coal seams. This paper studies mining-induced cracks and air leakage caused by the repeated mining of shallow coal seams at the Bulianta coal mine, Shendong Coalfield, China. A similar simulation experiment was carried out in the laboratory, and then the ground mining-induced cracks were observed and the crack air leakage was detected. The results showed that the surface air flowed into the composite goaf before the fractures redeveloped to the surface during the process of lower coal seam mining. Due to the different development processes of vertical fractures in various regions, the width of the vertical fractures in the boundary area of the overlying goaf increases significantly after the repeated mining of coal seams, while the vertical fractures in the central area of the overlying goaf experience almost no change. The distribution of the surface air leakage cracks is in the shape of “回”. Graben-type cracks and half-graben-type cracks are surface air leakage cracks, which are the focus of surface air leakage problems, especially the half-graben-type cracks. The results are important in engineering for reducing air leakage from surface mining-induced cracks.  相似文献   

2.
With hard roof conditions and the influence of side and front abutment pressures, pressure bump and large deformations periodically occur in the advanced support area of longwall face gob-side gateroads. To control the strong strata behaviours in gob-side gateroads, “directional hydraulic fracturing, to cut off the roof hanging over the adjacent gob area, and pre-fracturing of the roof, located behind the working face being extracted,” are performed. The directional initiation of hydraulic fracturing is controlled by pre-slotting, and this action guides the propagation of hydraulic fractures in three-dimensional space. The oriented fractures meet engineering requirements by cooperating with both the in situ ground stresses and the mining-induced stresses, as well as the technology of hydraulic fracturing. In field applications, hydraulic fracturing has proven to be a viable option for weakening hard roofs, destressing the side and front abutment pressures at the mining face and also transferring in situ and mining-induced stresses. Successful field tests in the Tongxin coal mine, Datong district, as well as other coal mines, show that hydraulic fracturing in both a hanging roof over an adjacent gob area and in the gob area behind the advancing working face controls the behaviour of strong strata material on the gob-side of gateroads in longwall mining and also guarantees safe extraction at the working face.  相似文献   

3.
In order to satisfy the energy demand of China, it is an effective way to exploit coal resources efficiently in western China. When a coal seam with a shallow burial depth is mined on a large working face with width of 300 m in a semi-desert aeolian sand area of western China, the induced subsidence and damage of ground surface are remarkably different from those induced by a traditional mining condition. By taking Working Face 12,406 of Bulianta Coalmine in Shendong Mining Area as an example, this paper, based on actual measurement data, analysed the developmental features and causes of ground surface racks. Research results showed that the shape of the static crack in the peripheral area on the working face was very similar to that contained in the actual measurement results of other areas; specifically, such static crack was arc-shaped and the actually measured static crack angle was 84.5°. However, the dynamic crack above the working face took on uniqueness in two developmental cycles (expansion to restoration). This phenomenon is not available in other research areas. Starting from the structure of rock strata, this paper analysed the two developmental cycles of dynamic cracks according to the periodic fracture theory of key stratum and verified the results of theoretical analysis by employing the similar material model.  相似文献   

4.
在谷德振先生“水文地质结构”学术思想指引下,本文提出建立结构水文地质学的设想,论述了其基础理论框架。从方法论角度将矿山水害防控分为被动防控和主动防控两种方法。以结构水文地质学指导煤矿高势能突水溃砂防控,分析了被动防控可能产生突水溃砂灾害的机理; 提出了主动地质工程防控的原理,包括地质材料性质改造、结构隔水性能重构、赋存水动力环境改造、减轻采掘诱发覆岩破坏等具体方法。抛砖引玉,以期催生符合中国矿山防治水实践需要的创新理论和方法。  相似文献   

5.
The dynamic change of mining-induced stress is the main reason for large deformation of surrounding rock. To investigate the influence of mining-induced stress and deformation is important for appropriate supportive design. It also helps to raise the safety and productivity of longwall mining operations. In this paper, Weijiagou Coal Mine in Southwest China was selected as the case study. In order to research on the deformation and breakage of overlying strata, physical modeling test was carried out on the self-developed rotatable physical similar test system. By using digital image correlation (DIC) technique, the deformation of strata and development of cracks in the process of coal seam excavation were acquired, meanwhile, mining-induced stress was also monitored by pressure cell and strainmeter. According to the mechanical structure of stope, the height of the destressed zone has a significant influence on stress distribution. In order to minimize the discrepancy between the physical model test and theoretical analysis, the dimension of the plastic zone of roadway was added into the mining panel width, and the gap between the experimental and theoretical results reduced.  相似文献   

6.
浅埋煤层过沟开采在陕北矿区普遍存在,严重威胁着矿井安全生产和生态健康发展。覆岩采动裂隙及地表裂缝的发育是岩体微裂隙的延伸和扩展的结果,为更加系统地研究浅埋煤层过沟开采覆岩微裂隙的演化规律,以陕北安山井田125203工作面为背景,根据现场沟道剖面及钻孔资料,采用Particle Flow Code (PFC)数值模拟平台构建颗粒流数值采煤模型,模拟分析覆岩微裂隙的发育特征、数量变化规律和力链演化特征,揭示微裂隙的发育规律和地表裂缝发育机理。结果表明:浅埋煤层过沟开采过程中,覆岩微裂隙发育表现为“产生–延伸和扩展–聚合成群–贯通成缝”的动态演化过程;根据微裂隙的基本发育特征及分布规律,可将发育全程划分为非连续跳跃式、连续贯通式和横向扩展式3个微裂隙发育阶段;覆岩微裂隙数量随工作面推进距离的增大而增多,非连续跳跃式和连续贯通式发育阶段呈现指数增长特征,分别累计发育微裂隙547和2 867条,覆岩微裂隙逐渐发育至地表;横向扩展式发育阶段呈线性增长特征,累计发育微裂隙11 705条,微裂隙数量随岩层高度的增大而减小;覆岩力链演化过程中,强黏性力链的破坏致使微裂隙发育,局部产生应力集中,强黏性力链拱自下而上逐渐破坏并贯通至地表,导致微裂隙延伸发育至地表形成地裂缝,力链在未贯通岩层的微裂隙两侧和尖端及地表裂缝两侧形成强力链区,微裂隙处形成弱(无)力链区。该研究成果可为陕北矿区浅埋煤层过沟开采覆岩及地表损害防控提供理论指导。   相似文献   

7.
华北煤田岩溶陷落柱(简称“陷落柱”)是地质历史演化过程中形成的产物。80多年来,在中国华北煤田39个矿区煤矿开采过程中共揭露10 000多个陷落柱,因其导致的重大突水淹井事故20余起,研究岩溶陷落柱对系统认识中国矿山岩溶水文地质条件以及防治岩溶水害具有十分重要的理论与现实意义。文章系统梳理、总结了华北煤田陷落柱的发育特征、成因机理、突水机理、探查与防治方法,归纳出近年来华北南缘陷落柱的研究成果,并结合目前华北煤田生产过程中陷落柱研究与水害防治中存在的问题,从陷落柱形成机理与演化过程、小型隐伏陷落柱精细化探查与解译、陷落柱“动态监测—预测模型—突水机理”模式以及陷落柱水害防治技术体系等方面展望了其今后研究趋势及水害防治的方向。   相似文献   

8.
With the increase of mining depth in Chinese coal mines, the entry floor heave becomes one of the major engineering problems. This paper has studied the stress and displacement distribution around an entry in Buertai coal mine, China. The mechanism of floor heave is analyzed using the method of complex variable function. The influences of floor mechanical properties, longwall face advance, and mine water on the stability of the floor are then identified. The results show that (1) the floor moves towards the center under the concentration of the tangential stress, resulting in floor heave; (2) the floor stability is mainly influenced by the mechanical properties of the floor and the confining stress from the surrounding rock; and (3) the unnoticeable movement of the floor may be enlarged by the mining activity (face advance) and mine water. The proposed theoretical model is validated by the numerical modeling and the in situ. Good agreements are found between the theoretical analysis and the numerical modeling results and the in situ. It is thus believed that the complex variable function method can be used for analyzing the floor heave problem. Based on the mechanism of floor heave, we divide the control techniques into two categories: creation of a stress-relief entry and floor reinforcement. The techniques were practiced at two Chinese coal mines with good ground control effects.  相似文献   

9.
不规则煤层开采容易引发顶板应力集中、矿压显现异常等问题,为探究变面长采场顶板破断规律与结构演化特征,针对工作面斜长由小变大的突变型采场不同开采阶段的几何特征与力学成因,运用小挠度薄板弯曲理论依次建立并解析4种边界条件的顶板结构模型。根据变面长采场顶板矿压分区显现特征,采用MATLAB与FLAC3D数值模拟方法分析顶板破断规律与宏观力学响应。通过系统分析与总结归纳,构建了变长工作面“三场三区三结构”的覆岩结构传递演化模式,提出了“两场两规律”的顶板分区破断效应。并通过典型工程案例的矿压实测进行应用验证。结果表明:变面长采场分为小面采场、变面采场和大面采场,小面采场顶板为缓压型结构,发生的是传统“O-X”形破断;变面采场顶板为突变型结构,顶板断裂产生的延长形与漂移形“O-X”破断裂隙与大面采场增压型结构顶板的裂纹发育特征较为相似,故将二者整合为全大面采场;全大面采场顶板发生的是“X-O”形破断,裂纹继续发展产生延长形破断,形成“两场两规律”的顶板破断理论。研究结论为探明变面长采场的覆岩运移本质,加强深部复杂煤层赋存条件下的顶板灾害防控提供了重要依据。  相似文献   

10.
陕北浅埋煤层大规模、高强度开采诱发了严重的地面塌陷,造成大面积土地损毁、水土流失和植被死亡,导致表生环境出现退化。为掌握浅埋煤层开采地面塌陷裂缝发育规律,明晰其机理,提出适宜的治理恢复措施,实现“煤?水?生态”的协调发展,以陕北张家峁井田和柠条塔井田为研究区,采用实地调查、模拟实验和理论分析相结合的方法开展了浅埋煤层开采地面塌陷规律及防治方法研究。结果表明:浅埋煤层开采地表裂缝呈“O”型展布,静态发育特征与采高和地形地貌呈正相关关系、与采深呈负相关关系,且同一工作面切眼附近地表裂缝发育程度最高、巷道次之、面内最低;地表裂缝具有“先开后(半)合”和“只开不合”2种活动特征,整体活动时间为4~9 d,活动期间裂缝初始开裂宽度与最大发育宽度呈线性正相关关系,与稳定宽度呈线性和指数2种正相关关系;黄土沟壑区下坡段开采地表裂缝活动与表土块体的稳定性系数有关,而稳定系数与坡角呈负相关的一次幂函数,与主裂缝间距呈正相关的一次幂函数。上坡段开采坡体裂缝“先开后(半)合”活动受岩块倒转和坡体滑移双重控制,面内沟底裂缝“先开后合”的活动特征受关键岩层运移控制。研究提出了黄土沟壑区沟底贯通型裂缝“裂缝填充+沟道恢复”、坡体裂缝 “裂缝充填+微地形改造”的治理方法和风沙滩地塌陷区的“三圈”修复模式。研究成果在陕北安山煤矿和柠条塔煤矿进行了应用,效果良好。   相似文献   

11.
淮南采煤沉陷区积水来源的氢氧稳定同位素证据   总被引:2,自引:0,他引:2  
淮南是我国东部重要的能源基地,由于长期地下采煤,地表形成大面积的采煤沉陷区并积水,造成严重地质灾害。针对于此,部分学者提出利用采煤沉陷区建立"平原水库"解决周边地区干旱年份农田缺水问题的设想。然而,一方面,由于煤层上覆几百米厚的新生代沉积,采煤塌陷形成的沉陷裂隙是否沟通了不同含水层之间的水力联系,并因此改变了这个地区的地下水系统,成为区域水资源评价需要了解的一个重要科学问题;另一方面,建立"平原水库"需要有稳定的补给水源,采煤形成的沉陷裂隙如果沟通了地下不同深度含水层的水力联系,是否使地下水成为塌陷区除降雨外的重要补给来源,这就成为评价"平原水库"水资源潜力的重要参考依据。氢氧稳定同位素是示踪天然水体水来源的重要手段,笔者在淮南矿区采集了旱季和雨季的浅层地下水、河水、雨水、沉陷区的积水等不同水体的水样23件,分析了其氢氧稳定同位素组成并与深层地下水进行对比。结果表明:雨季和旱季,该地区采煤沉陷区积水的氢氧稳定同位素组成都非常接近大气降水的氢氧稳定同位素组成,而与深层地下水的氢氧稳定同位素组成相差较大,说明采煤沉陷区的积水来源主要是大气降水补给。采煤沉陷区的沉陷裂隙贯穿了整个新生代地层,使地表水发生下渗与在深部与深层地下水发生不同程度的混合,而深层地下水尚不是"平原水库"的稳定补给源。  相似文献   

12.
The moderate magnitude Chamoli earthquake that occurred in the Garhwal Higher Himalaya, in the early hours of March 29, 1999, caused intense damage to the ground and mountain slopes of the Alaknanda–Mandakini river valley and adjoining region. A systematic survey of this induced damage was conducted immediately after the earthquake occurred. Prominent shallow cracks of significant length, negligible width and indeterminate vertical extent, conspicuously tensile in nature, with little or no slip across the crack planes, were observed in the ground at several places along the surveyed route. These cracks had formed in the dynamic phase of the Chamoli earthquake process that is in the period of time during which the earthquake-generated seismic waves were passing through the geographic region of interest. However, we use the theory of earthquake-induced static (or long time) stress changes to visualize such cracks at some selected sites where ground damage was relatively more intense and varied to suggest lower bound estimates of the dynamic stress contributions of the main shock for their formation.Based on the results of our analysis we conclude that, just prior to the earthquake occurrence, under the influence of the local ambient stress field, the ground at these sites was already near failure in tension. To this, in its dynamic phase, the Chamoli earthquake induced stress perturbations, having, across the planes of the cracks, (i) shear components which were nearly equal and opposite to similar components of the ambient stress field and (ii) normal (tensile) components, necessary for triggering tensile failure of the ground. The σ3 (or minimum principal stress) component of the resultant perturbed failure stress field thus became sufficiently tensile while the transverse stresses became sufficiently insignificant. This facilitated formation of major tensile cracks in the ground there. Our static estimates of the tensile stress changes at the different sites are, in essence, estimates of the minimal triggering stress perturbations that was provided by the Chamoli earthquake in the dynamic state for the formation of the tensile cracks there.  相似文献   

13.
Water resource is the focus and hinge between ecological environment and socio-economic development. Watershed is the basic unit of hydrology and water resource studies. It is the current hotspot in water science research to carry out the integrated research of the hydrology and water resource at the watershed scale. The Heihe River Basin is the second largest inland river basin in northwestern China, which becomes one of the hot watersheds for its unique hydrological and geographical characteristics. Based on the Web of Science Core Collection, the scientific advances achieved in the Heihe River Basin were estimated from the new sight by combining disciplinary development and problem focus, time evolution and spatial variations. The results indicated that the Heihe River Basin has made positive contribution to the world science in remote sensing, evapotranspiration, water cycle, water resources management and utilization, and climate change research in arid areas. The great achievements has promoted the Heihe River Basin up to the same levels as the international typical basins in the past 30 years, especially after the performances of the major research program entitled “Integrated Study of Eco-hydrological Processes in the Heihe River Basin” (referred to as “Heihe River Program”) supported by a grant from the National Natural Science Foundation of China and large field observation experiments. The number of published articles has ranked the top 20 in the global watershed science research. Some important scientific achievements have been obtained at the mechanisms of eco-hydrological processes in inland river basins, which can actively serve the decision making of the water resource management and sustainable development in the Heihe River Basin. The data mining and contrastive study based on bibliometrics can afford scientific reference for the watershed science research.  相似文献   

14.
Wang  Shijin 《Natural Hazards》2017,85(2):1209-1222

Under the assumption of “technology will not be forgotten,” this study estimates and decomposes the total-factor energy efficiency (TFEE) using the sequential data envelopment analysis-Malmquist productivity index and directional distance functions that consider undesirable output based on the provincial panel data of China from 2001 to 2013. On this basis, we make an empirical study of the relationship between foreign direct investment and energy efficiency with the dynamic panel model. The result shows that over the sample period, on the national level, the trend of the TFEE was upward, but the growth rate showed a downward trend. On the regional level, the TFEE in the eastern region was higher than that in the central and western regions. In addition, foreign direct investment enhanced the energy efficiency significantly, which demonstrated that the “pollution halo” effect was greater than the “pollution haven” effect. It is indicated that technical progress was the main cause of the increase in the TFEE, but technical efficiency played the opposite role. This conclusion remains valid even if the TFEE indicator is changed into the single-factor energy efficiency indicator.

  相似文献   

15.
矿区水文地质研究进展及中长期发展方向   总被引:2,自引:0,他引:2  
矿区水资源保护和矿山防治水这两个互相矛盾又紧密联系的问题给传统的矿山水文地质学带来了更多的挑战和机遇,迫切需要新理论、新技术的发展。为了更好的实现矿区未来地下水资源的开采、利用与保护以及采煤安全和区域水资源可持续利用,本文选择长治盆地为重点研究区,从采动引起的覆岩移动入手,在资料分析的基础上,采用相似材料模拟、综合物探、野外监测、现场注(压)水试验的方法,运用水文地质学原理研究了采煤引起含水层结构变异厚度及其渗透性变化特征;在此基础上,以长治盆地集中开采区水文地质条件和野外监测数据为基础,建立了区域地下水流场三维动态模拟试验台,为研究含水层结构变异后的地下水循环机理和水资源重新分布提供技术支撑;本文同时指出了我国矿山水文地质研究目前存在的问题和面临的挑战,分析了矿山水文地质学科的发展趋势,展望了未来相关分支学科和关键核心技术的发展方向与前景。  相似文献   

16.
The goal of this research study is to describe academic issues which have been debated in the field of Chinese geosciences for a century. In 1922, Jonquei S. Lee(Li Siguang) discovered Quaternary glacial relics at Taihang Mountainin eastern China. In 1947, he published his research findings in the magazine Mount Lushan in Glacial Age. The research results had established three Ice Ages: Poyang(Gonzi), Dagu(Minde), and Lushan(Lisi). However, at that time, no Wurm glacial relics of the last Ice Age had been found in Lushan Mountain. Since then, the research team represented by Shi Yafeng, who is considered to be "the father of glaciers in China", questioned Jonquei S. Lee's research results and concluded that "Professor Jonquei S. Lee's Quaternary glacier research in Lushan Mountain having misread the debris flow". In 2005, the "middle-low mountains" in eastern China were finally defined as follows: "We clearly and unambiguously believe that there were no glacial activities in the middle-low mountainous areas of eastern China(east of 102° to 104°E; below 3,000 and 2,500 m) during the Quaternary Period". Currently, the long-standing academic debate appears to have come to a conclusion. As of 2015, the author and others began to investigate and study the Quaternary glacial relics in Mengshan Mountain(1,156 m above sea level), Shandong Province, one of the "middle-low mountains" of eastern China. The relics have been observed to posses the systematic features of glacial erosion, trough and valley striations, and moraine deposits. The applied dating method shave confirmed that there were not only glacial relics of the last Ice Age(Wurm), but also Holocene glacial relics in the Mengshan Mountain area. Therefore, in order to further establish the corresponding relationship between the glacier, loess, stream sediment series, and MIS in the Mengshan Mountain area, a large number of chronological studies have been carried out regarding the various types of sediments in the area, and 24 dating datahave been obtained using OSL, CRN, and 14 Cmethods.On this basis, the corresponding relationship between the sedimentary sequences and the MIS was established for the first time in eastern China, which in dicates the environmental changes which had occurred in eastern China since 80 ka. These discoveries s and chronological study results confirm the existence of the Last Ice Age, as well as Holocene glacial relics at Mengshan Mountain, there by confirming that Quaternary glaciation had occurred in the middle-low mountain areas of eastern China.  相似文献   

17.
隆尧地裂缝是华北平原地区规模最大、活动性最强、灾害程度最为严重的构造地裂缝,但其与断裂之间的成因研究一直缺少系统的证明材料和完整的理论分析,即隆尧地裂缝与断裂之间是怎样的成生关系仍较为模糊。文章根据现场调查、探槽、地球物理探测和钻孔联合剖面等方法,分析了隆尧地裂缝几何运动特点和深部构造特征,探讨了隆尧地裂缝的成因机理和模式。研究结果表明:隆尧地裂缝(主要指西段)的发育位置与隆尧活动断裂基本重合,地裂缝走向近EW,倾向南,倾角60°~80°,南盘相对北盘下降,具正断性;同时,地裂缝面处黏土层中发育擦痕,上盘发育的分支裂缝与主裂缝相交成“y”型,地裂缝上下盘位移差随深度增加;地球物理探测解译隆尧活动断裂上断点埋深40~50 m,钻孔联合剖面揭示隆尧地裂缝向下延伸与隆尧活动断裂上断点吻合。地裂缝发育位置、产状、几何特点、运动特征与物探解译、钻孔联合剖面揭示的隆尧活动断裂一致,因此,隆尧地裂缝与隆尧活动断裂直接相连。根据上述成因理论,提出了构造地裂缝的一种成因模式——断层直剪式,即:在区域应力加强或转变的基础上,基地隐伏断裂开始蠕滑运动,断层面或断层带向地表延伸,切穿第四系岩土层,在地表形成陡坎。并据此分析了隆尧地裂缝的形成、显现和发展过程,为断层直剪式地裂缝成因研究提供理论指导。  相似文献   

18.
邓孝 《地质科学》1990,(1):81-86
本文基于对地壳浅部地温场形成特征及控制因素的分析及对我国东部几十个矿区的地温测量和对若干典型热矿山的研究成果,提出改进的矿山地温类型划分,对原分类加以修订。新的划分系统分为两级,第一级为“类”,按矿区平均地温梯度值分为低地温(梯度)类、中常地温(梯度)类和高地温(梯度)类。第二级为“型”,按引起地温场显著变化的主要控制及致热因素,将低地温类型分为深源低热型、地下水循环冷却型;高地温类分为深源高热型、局部聚热型和附加热源型。这一新的划分基于广厚的资料基础,采取统一的划分原则,具有大的蓄容能力,较之原划分更符合我国矿山地温场的实际,因而对矿山地热研究实用意义更强。  相似文献   

19.
20.
对彬长矿区地面裂缝进行了详细调查,指出该矿区地面裂缝的主要为开采塌陷引起的采陷裂缝,并对采陷裂缝的发育特征进行了归类。分析认为:采深增大,基岩厚度增大,覆岩的稳定性增强,对地面裂缝的规模控制也增强,60°~70°为塌陷裂缝边界范围圈定的指标值;工作面变宽,采厚变大,会加剧地面裂缝的产生和发展;“上硬下软”的地层结构,有利控制地表移动变形,关键层厚度增大,可以明显减缓地表移动;松散层厚度愈大,抗变形能力愈大的土层,其裂缝愈不发育;V型沟谷对裂缝的形成和发展影响较小,斜坡则对裂缝的发育有加剧作用;降雨对裂缝的发育有明显的加速作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号