首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assessment of hydrogeochemical processes that govern the water quality of inland freshwater aquifers in coastal environment, especially in Indian sub-continent, is occasionally attempted. To bridge the gap, a detail hydrochemical evaluation of groundwater occurring in coastal alluvium is attempted. Single set of high-density water sampling is done from a limited area to gain an in-depth knowledge of the processes that govern the water chemistry of the sandy aquifers. The water is of weak alkaline nature and less mineralized, EC being < 1,000 μS/cm in many samples. Major ion composition indicates that water is contaminated with excess concentration of nitrates. Ionic abundance is in the order of Cl? > Na > Ca2+ > HCO3 ? > SO4 2? > Mg2+  > NO3 ?. Na+ and Cl? are almost in similar proportions implying the influence of coastal climate on water quality. The water shows modest variation in their ionic assemblage among different sample points as evident from Schoeller scheme. Groundwater can be classified into three distinct facies viz. Cl?–Ca2+–Mg2+, Na+–Cl? and Ca2+–Mg2+–HCO3 ? types. The ionic assemblages, their indices, ratios and cross-plots substantiate that multiple processes were involved in the evolution of the water chemistry. Among them, silicate weathering, halite dissolution, ion exchange and base exchange played prominent role in the ion enrichment of groundwater. The aquatic chemistry is further influenced and modified by marine environment, evapotranspiration and anthropogenic inputs which is authenticated by good correlation (r 2 = 1) among the Na+–Cl?, EC–Mg2+, Na+ and Cl?. Gibbs plots established that evaporation is more responsible for contribution of minerals to the groundwater than aquifer material. Nitrate contamination can be attributed for poor sewerage disposal mechanism which is aggravated by fertilizer inputs, irrigation practices and agriculture activity. A contrasting correlation (r 2 ≥90 to <0.40) among select pairs of ions reassures dissimilar source of those ions, involvement of multiple processes and limited interaction of formation water with aquifer material.  相似文献   

2.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

3.
The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, PO4 ?, F? and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl?, Na+, Mg2+, Ca2+, SO4 2?, K+ and NO3 ?. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.  相似文献   

4.
Arsenic (As) and fluoride (F?) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F?, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F? levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl? and NO3 ? (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L?1 WHO limit for drinking water and F? was under the 1.5 mg L?1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = ?0.26 and ?0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F? and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3? (arsenate) and AsO3 3? (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F?-bearing minerals, but Fe (hydr)oxides can be a secondary source of F?, as suggested by the positive correlation between As and F? in the pre-monsoon season.  相似文献   

5.
The present study deals with the hydrogeochemistry and water quality of shallow aquifers in two important river basins—the Ithikkara and Kallada river basins—draining the south western flanks of Western Ghats in Kerala, South West India. Well water samples were collected from 20 dug wells with a depth range of 1 m below ground level (mbgl) to 18.2 mbgl during pre-monsoon, monsoon, and post-monsoon seasons of the year 2011–2012. These samples were analyzed for various physico-chemical parameters following standard methods and were evaluated for their interrelations and drinking water suitability. The pH of the water samples shows wide variation from highly acidic to highly alkaline water. About 80% of pre-monsoon samples recorded Fe2+ concentration above the permissible limit of drinking water standard. Water Quality Index (WQI) shows that majority of the well water samples fall in the category of excellent–good for drinking purpose. The results of the irrigation suitability assessment using the procedures like Percent Sodium, Sodium Absorption Ratio, Residual Sodium Carbonate, Kelly Index, Permeability Index, and Magnesium Hazard reveal that the well waters of the study area are fit for irrigation purpose. Na+/Cl? ratio reflects the release of sodium to water due to silicate weathering. The samples have a Ca2+/Mg2+ ratio equal or greater than 2 indicating the effect of silicate minerals in contributing Ca2+ and Mg2+ ions to the well water. The saturation indices reveal that groundwater is supersaturated with SiO2. Among the causative factors that determine the hydrochemical quality of well water samples, silicate weathering plays a pivotal role with significant input of ions from anthropogenic sources.  相似文献   

6.
A comparative hydrogeochemical study evaluated arsenic release mechanism and differences in contamination levels in the shallow groundwater of two areas within the deltaic environment of West Bengal (i.e. Karimpur and Tehatta blocks of Nadia district) in India. Groundwaters from both the areas are Ca-Na(K)-Cl-HCO3 type with highly reducing character (−110.16 ± 16.85 to −60.77 ± 16.93 mV). Low correlations among As, Fe, and Mn and the higher association between As and DOC are indicative of microbial decomposition of organic matter enhancing the weathering of shallow aquifer materials. Arsenic contamination in groundwater is higher in Karimpur (95 ± 81.17 μg/L) than that in Tehatta (43.05 ± 41.06 μg/L). The release mechanism of arsenic into groundwater is very complex. Low Fe (0.27–4.78 mg/L and 0.81–4.13 mg/L), Mn (0.08–0.2 mg/L and 0.03–0.22 mg/L), and SO42− (3.82 ± 0.31 and 2.78 ± 0.40 mg/L) suggest that the mechanism of arsenic release is not a single mechanistic pathway. Clustering of redox-active parameters in the principal component planes indicate that the reductive dissolution, and/or weathering/co-precipitation of Fe/Mn-bearing minerals in the shallow aquifer sediments control the dominant mechanistic pathway of arsenic release.  相似文献   

7.
ul Shafiq  Mifta  Ashraf  Ifra  ul Islam  Zahoor  Ahmed  Pervez  Dimri  A. P. 《Natural Hazards》2020,104(1):611-637
Natural Hazards - Successful management of the water resources directly depends on our understanding of the heterogeneity of changing climate and consequent response of annual and seasonal...  相似文献   

8.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   

9.

Background  

The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh.  相似文献   

10.
The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine–Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28–3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11–0.27); low Mg# of olivine (∼Fo90) and high Al2O3 in pyroxenes (3.71–6.35 wt.%). They have very low REE concentrations (∑REE = 0.48–2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14–0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30–0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13–1.23) with more fractionated HREE patterns (SmN/YbN = 0.13–0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8–11.9) and Pt/Pt* values (0.2–1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (∼2–12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.  相似文献   

11.
In this study, combining interpretations of conservative dissolved ions and environmental isotopes in water were used to investigate the main factors and mechanisms controlling groundwater salinization and hydrogeochemical processes in the Eastern Nile Delta, Egypt. Hydrogeochemical and isotopic study has been carried out for 61 water samples from the study area. Total dissolved solid (TDS) contents of groundwater are highly variable rising along flowpath from the south (410 mg/L) to the north (14,784 mg/L), implying significant deterioration and salinization of groundwater. Based on TDS and ionic ratios, groundwater samples were classified into three groups. In low-saline groups, water chemistry is greatly influenced by cation exchange, mineral dissolution/precipitation, anthropogenic pollutants and mixing with surface water. Whilst, in high-saline groups, water chemistry is affected by salt-water intrusion, reverse cation exchange and evaporation. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta and saturation index approaches. The δ18O–δ2H relationship plots on a typical evaporation line, suggesting potential evaporation of the recharging water prior to infiltration. Isotope evidence concludes that the groundwater have been considerably formed by mixing between depleted meteoric water recharged under different climatic conditions and recently infiltrating enriched surface water and excess of irrigation water. The δ18O data in conjunction with chloride concentrations provide firm evidence for impact of dissolution of marine-origin evaporite deposits, during past geologic periods, on groundwater salinity in the northern region. Moreover, the relation between 14C activities and Cl? concentration confirms this hypothesis.  相似文献   

12.
In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.  相似文献   

13.
黄河三角洲地下水咸化已成为区域最突出的生态环境问题之一。识别地下水补给及盐分来源是有效控制和改善地下水咸化问题的关键。本研究采集了研究区浅层地下水、地表水和海水等不同类型水样,利用离子比、Piper三线图、吉布斯图等方法对八大离子浓度、δD和δ18O 组成、Br和Sr 浓度等进行地下水补给研究与盐分来源辨析。结果表明:(1)黄河三角洲浅层地下水以总溶解性固体(TDS)为338 g/L的咸水为主,地下水水化学类型较为单一,主要为Cl-Na型。(2)三角洲区域地下水以大气降水补给为主,并且在补给过程中经历了不同程度的蒸发作用的影响,黄河现行流路区域地下水主要来源于河水侧渗补给,但浅层地下水含水层水平渗透性较差限制了黄河侧渗补给范围。(3)海洋是黄河三角洲浅层地下水盐分的主要来源,黄河现行流路区域及近岸地下水盐分来源于海水混合,三角洲北部刁口河等古河道区域地下水盐分主要来源于海相蒸发盐淋滤溶解。  相似文献   

14.
15.
 Chemical data are used to clarify the hydrogeological regime in the Mafraq area in northern Jordan, as well as to determine the status of water quality in the area. Groundwater from the shallow aquifer in the Mafraq area can be divided into two major groups according to geographical locations and chemical compositions. Water in the basaltic eastern part of the study area is characterized by the dominance of chloride, sulfate, sodium, and potassium, whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the shallow aquifers contain a single water type which originated in a distinct climatic regime. This water type deviates from the Global Meteoric Water Line (MWL), as well as from the eastern Mediterranean meteoric water line. The waters are poor in tritium, and thus can be considered generally older than 50 years. Chemical mass balance models suggest that water is moving from the west towards the north of the study area. This suggests that waters from the different basins are separated from each other. Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the waste-water treatment plant at Khirbet es Samra is a contributor to pollution in the southwestern part of the study area. Received: 20 August 1997 · Accepted: 3 February 1998  相似文献   

16.
17.
In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl, Ca/(Ca + Mg)/SO4/(SO4 + HCO3), and environmental isotopes (δ18O, δ2H, 87Sr/86Sr, δ34S and δ13C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater.  相似文献   

18.
Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advection-dominated transport to variable shear and normal fracture stiffness magnitudes for a range of deviatoric stress states. Fracture aperture and hydraulic conductivity are solved for analytically using empirical hydromechanical coupling equations; groundwater flow paths and ages are then solved for numerically using groundwater flow and advection-dispersion equations in a traditional Toth basin. Results suggest hydraulic conductivity alteration is dominated by fracture normal closure, resulting in decreasing hydraulic conductivity and increasing groundwater age with depth, and decreased depth of long flow paths with decreasing normal stiffness. Shear dilation has minimal effect on hydraulic conductivity alteration for stress states investigated here. Results are interpreted to suggest that fracture normal stiffness influences hydraulic conductivity of hydraulically active fractures and, thus, affects flow and transport in shallow (<1 km) fractured-rock aquifers. It is suggested that observed depth-dependent hydraulic conductivity trends in fractured-rock aquifers throughout the world may be partly a manifestation of hydromechanical phenomena.  相似文献   

19.
A small karst aquifer of great structural complexity has been subjected to significant resource withdrawal over recent decades. This exploitation aroused social conflict due to the effect it has had on emblematic springs. This research has analysed piezometric data collected over the course of 12 years and the spatial hydrochemical data supplied by the main water points associated with it. The spatial and temporal evolution of the main chemical species in the groundwater and the hydrogeochemical processes affecting them have been studied, modelling them with the programme PHREEQC. These data suggest a complicated model of hydrogeological function with sectors storing water at different depths and connected to each other locally as determined by the geological structure.  相似文献   

20.
The shallow subsurface structures of the offshore Nile Delta particularly in the southeastern Mediterranean were dealt through the interpretation of 40 two-dimensional seismic reflection lines. The interpretations of seismic reflection data indicated that the principle sedimentary processes affecting the study area include three main structural groups according to their origin and development. The first group of structures comprises of gravity-driven structures, which include slides, slumps, turbidities, and debris flow. Slides are present in three different forms on seismic sections: slide sheets, slides with scar, and wedges of slide materials. Slumps have many geometrical shapes: lenses, spoon-shaped slumps, and slumped blocks bound by growth faults. Debris flows are present as transparent unit (due to the dispersion of seismic waves at debris boundaries), whereas turbidities appear on the seismic profiles, which are formed of closely spaced parallel thin reflectors analogous to their thin stratified bedded layers. The second group of structures is syn-depositional structures, which include growth faults, and tilted and rotated fault blocks. Growth faults are listric in shape and usually dip seaward; displacements along the fault plane increase with depth. Some of these faults are incipient, and some are complicated and intersected by secondary antithetic faults. Most of the growth faults soles out basin wards and in the evaporites layer. Fault blocks are formed due to the Messinian evaporite movement vertically and horizontally due to its mobility as a consequence to the pressure resulted from the overloading of Pliocene sediment. The third group of structures comprises evaporite flow structures such as diapiric structures and graben collapse structures. The surface of the Messinian evaporites was folded during its flow as a consequence to the lateral compression acted on the mobile strata of the Messinian evaporites to form diapiric triangular structures and creates a stress zone faulting and fractures system. These conditions led to the formation of collapse structures or graben collapse structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号