首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

2.
A mean varve thickness curve has been constructed for a part of the Swedish varve chronology from the northwestern Baltic proper. The mean varve thickness curve has been correlated with the δ18O record from the GRIP ice-core using the Younger Dryas–Preboreal climate shift. This climate shift was defined by pollen analyses. The Scandinavian ice-sheet responded to a warming at the end of the Younger Dryas, ca. 10995 to 10700 clay-varve yr BP. Warming is recorded as a sequence of increasing mean varve thickness and ice-rafted debris suggesting intense calving of the ice front. The Younger Dryas–Preboreal climatic shift is dated to ca. 10650 clay-varve yr BP, about 40 yr after the final drainage of the Baltic Ice Lake. Both the pollen spectra and a drastic increase in varve thickness reflect this climatic shift. A climate deterioration, correlated with the Preboreal oscillation, is dated to ca. 10440 to 10320 clay-varve yr BP and coincides with the brackish water phase of the Yoldia Sea stage. The ages of the climatic oscillations at the Younger Dryas–Preboreal transition show an 875 yr discrepancy compared with the GRIP record, suggesting a large error in the Swedish varve chronology in the part younger than ca. 10300 clay-varve yr BP. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

4.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A late Quaternary deep-water stratigraphic framework has been established for the deep-water areas (>450m) of the northern Rockall Trough and Faeroe-Shetland Channel. Four stratigraphic units (1–4) are identified; these are primarily biostratigraphic units based on dinoflagellate cyst evidence. Unit 1 represents the late Weichselian glacial (pre-13 000 yr BP); unit 2 the Late Glacial Interstadial (11 000-13 000 yr BP); unit 3 is of Younger Dryas age (10 000-11 000 yr BP); and unit 4 represents the Holocene interglacial (post-10 000 yr BP). This stratigraphy is supported by the discovery of the mixed Vedde Ash (10 600 yr BP) and North Atlantic Ash zone 1, and the Saksunarvatn Ash (9000–9100 yr BP), concentrated in units 3 and 4 respectively. The sedimentology indicates that the oceanographic regime underwent a major change between the glacial and interglacial stages. This is marked by the onset of strong bottom current activity, allied to the restoration of overflow of the Norwegian Sea Deep Water into the North Atlantic, towards the end of the Younger Dryas Stadial. Despite intense bioturbation and bottom-current reworking the basic stratigraphic framework is maintained. Recognition of two volcanic ash markers enables correlation with established onshore and offshore sequences of marine and non-marine environments.  相似文献   

6.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

7.
From stratigraphic investigations of 38 piston and vibro cores, four fine-grained Late Weichselian sediment units can be defined in the southern Kattegat. A continuous stratigraphic record of the Late Weichselian sediments cannot be established from single cores due to the uneven distribution of the units, but by compilation of relative stratigraphies a composite record can be determined for sediments deposited between approximately 13,500 and 10,000 BP. The sediments contain both lithological and biostratigraphical evidence that the Baltic Ice Lake was suddenly drained through the Öresund Strait at about 12,700 BP. This drainage route appears to have been unchanged until about 10,300 BP when a passage opened in south central Sweden through which the final drainage of the Baltic Ice Lake took place. The Younger Dryas cold event appears to have had only marginal effects on the marine benthic life in the region. The data also indicate that drainage of fresh Baltic water through the Öresund Strait was the driving force for an inflow of marine water from the Skagerrak North Atlantic Ocean into the southern Kattegat, as occurring at the present. This paper is a contribution to IGCP 253, Termination of the Pleistocene .  相似文献   

8.
Principles and terminology for classification of the Quaternary are discussed, including lithostratigraphy, biostratigraphy. morphostratigraphy, climatostratigraphy and chronostratigraphy. The main conclusion is a proposal for a common chronostratigraphical classification of the Quaternary in Norden (and partly continental NW Europe). The Quaternary is subdivided into the Pleistocene and the Holocene Series. The Pleistocene is further subdivided into several provisional stages (Weichselian, Eemian, etc.), based on the sequence of glacials/interglacials. but with the boundaries preferably defined by stratotypes. The Late Weichselian and the Flandrian (Holocene) are subdivided into chronozoncs (Bolling, Older Dryas, Allerød, Younger Dryas, Preboreal, Boreal, Atlantic, Subboreal, Subatlantic) with the boundaries dcfined in conventional radiocarbon years.  相似文献   

9.
Palynological results from Liastemmen indicate a tripartite division of the Late Weichselian. In the pleniglacial period, from deglaciation ca. 14000 BP to ca. 13000 BP, Artemisia-dominated pioneer vegetation on disturbed, mineral-soil was strongly influenced by cold winters and katabatic winds. The Late Weichselian Interstadial (ca. 13000 BP-ca. 11000 BP) comprises a Salix-shrub consolidation phase, and from ca. 12700 BP a tree-birch phase. In the last 500 years of this period July and January means are estimated to about 16°C and between ?2°C and ?6°C, respectively. In the Younger Dryas Stadial (ca. 11000 BP-ca. 10200 BP) Artemisia-dominated vegetation returns. Three brief climatic deteriorations (ca. 12 250 BP, 11 700 BP, and 11 300 BP), unfavourable to woody vegetation on humus soils, are demonstrated within the interstadial. Critical climatic factors include cool winters and strong winds, exposing vegetation and soil to frost, drought, and erosion. The oldest and strongest oscillation, probably involving local deforestation, is correlated with the ‘Older Dryas deterioration’. Boreal-circumpolar, eurasiatic, and arctic-alpine plants dominated the late-glacial flora. For the majority of the late-glacial taxa a northward migration is demonstrated. This may also apply for Papaver radicatum, Pinguicula alpina, and Primula scandinavica, all with bicentric distributions in Norway today.  相似文献   

10.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

11.
Northern Folgefonna (c. 23 km2), is a nearly circular maritime ice cap located on the Folgefonna Peninsula in Hardanger, western Norway. By combining the position of marginal moraines with AMS radiocarbon dated glacier‐meltwater induced sediments in proglacial lakes draining northern Folgefonna, a continuous high‐resolution record of variations in glacier size and equilibrium‐line altitudes (ELAs) during the Lateglacial and early Holocene has been obtained. After the termination of the Younger Dryas (c. 11 500 cal. yr BP), a short‐lived (100–150 years) climatically induced glacier readvance termed the ‘Jondal Event 1’ occurred within the ‘Preboreal Oscillation’ (PBO) c. 11 100 cal. yr BP. Bracketed to 10 550–10 450 cal. yr BP, a second glacier readvance is named the ‘Jondal Event 2’. A third readvance occurred about 10 000 cal. yr BP and corresponds with the ‘Erdalen Event 1’ recorded at Jostedalsbreen. An exponential relationship between mean solid winter precipitation and ablation‐season temperature at the ELA of Norwegian glaciers is used to reconstruct former variations in winter precipitation based on the corresponding ELA and an independent proxy for summer temperature. Compared to the present, the Younger Dryas was much colder and drier, the ‘Jondal Event 1’/PBO was colder and somewhat drier, and the ‘Jondal Event 2’ was much wetter. The ‘Erdalen Event 1’ started as rather dry and terminated as somewhat wetter. Variations in glacier magnitude/ELAs and corresponding palaeoclimatic reconstructions at northern Folgefonna suggest that low‐altitude cirque glaciers (lowest altitude of marginal moraines 290 m) in the area existed for the last time during the Younger Dryas. These low‐altitude cirque glaciers of suggested Younger Dryas age do not fit into the previous reconstructions of the Younger Dryas ice sheet in Hardanger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Pollen, plant macrofossil, and charcoal records from Spruce Pond (41°14′22″N, 74°12′15″W), southeastern New York, USA dated by AMS provide details about late-glacial–early Holocene vegetation development in the Hudson Highlands from >12410 to 9750 14C yr BP. Prior to 12410 yr BP, vegetation was apparently open, dominated by herbs and shrubs (Cyperaceae, Gramineae, Tubuliflorae, Salix, Alnus, Betula), possibly with scattered trees (Picea and Pinus). However, Picea macrofossils are not found until 12410 yr BP. Development of a temperature deciduous–boreal-coniferous forest featuring Quercus, Fraxinus, Ostrya/Carpinus, Pinus, Picea, and Abies occurs between 12410 and 11140 yr BP. A return of predominantly boreal forest taxa between 11140 and 10230 yr BP is interpreted as an expression of the Younger Dryas cooling event. Holocene warming at 10230 yr BP is signalled by arrival of Pinus strobus, coincident with expansion of Quercus-dominated forest. Fire activity, as inferred from charcoal influx, appears to have increased as woodland developed after 12410 yr BP. Two charcoal influx peaks occur during Younger Dryas time. Early Holocene fire activity was relatively high but decreased for approximately 100 yr prior to the establishment of Tsuga canadensis in the forest at 9750 yr BP. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
A new pollen record from an upland lake in north-west Spain, Laguna de la Roya, spans the last ca 14,500 yrs and includes clear evidence of a Weichselian Lateglacial event correlative with the Younger Dryas. Pollen-climate response surfaces have been used to make quantitative reconstructions of palaeoclimate conditions at this and two other sites in the region. These reconstructions indicate that the climate was dry and cool during both the Late Weichselian and the Younger Dryas; in contrast, conditions during the Lateglacial Interstadial were relatively moist. During the early Holocene the climate was more continental in character than it has been for the last three millenia. Human activity has had a substantial impact upon the upland vegetation around Laguna de la Roya only during the last two millennia.  相似文献   

14.
The end of the Pleistocene in North America was marked by a wave of extinctions of large mammals, with the last known appearances of many species falling between ca. 11,000–10,000 14C yr BP. Temporally, this period overlaps with the Clovis Paleoindian cultural complex (11,190–10,530 14C yr BP) and with sudden climatic changes that define the beginning of the Younger Dryas chronozone (ca. 11,000–10,000 14C yr BP), both of which have been considered as potential proximal causes of this extinction event. Radiocarbon dating of enamel and filtered bone collagen from an extinct American Mastodon (Mammut americanum) from northern Indiana, USA, by accelerator mass spectrometer yielded direct dates of 10,055 ± 40 14C yr BP and 10,032 ± 40 14C yr BP, indicating that the animal survived beyond the Clovis time period and into the late Younger Dryas. Although the late survival of this species in mid-continental North America does not remove either humans or climatic change as contributing causes for the late Pleistocene extinctions, neither Clovis hunters nor the climatic perturbations initiating the Younger Dryas chronozone were immediately responsible for driving mastodons to extinction.  相似文献   

15.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   

16.
An analysis of Late Weichselian sediments from basins in southern and central Halland, southwestern Sweden was carried out. Together with evaluation of previously reported data from the area (isolated basins, highest shore levels, glaciofluvial delta levels, periglacial features, and early Holocene shore levels), this has provided the basis for constructing shore displacement curves for the area, covering the approximate time interval 14 000–9000 BP. There is a general fall in relative sea level (RSL) during this period. The average regression rate until the late Younger Dryas ( c . 10 300 BP) is 15–20 mm/yr. During the Younger Dryas the regression is possibly interrupted by minor transgressive phases. The RSL fall is rapid between c . 10 300 and 9500 BP. A halted glacio-isostatic rebound during the Younger Dryas, as the result of glacier growth, is suggested as a cause of the observed pattern of RSL change. Previously reported transgressive events during the early late-glacial phase are discussed with regard to global eustatic rise, glacio-isostatic loading and glaciolacustrine damming events.  相似文献   

17.
The Rautuvaara section in northern Finnish Lapland has been widely considered as the stratotype for the northern Fennoscandian late Middle and Late Pleistocene. It exposes four till units interbedded with sorted sediments resting on Precambrian bedrock. In order to shed light on the Scandinavian Ice Sheet (SIS) history and palaeoenvironmental evolution in northern Fennoscandia through time, a chronostratigraphical study was carried out at the Rautuvaara site. The succession was studied using sedimentological methods and different sand‐rich units between till units were dated using the Optical Stimulated Luminescence (OSL) method. The results obtained indicate that the whole sediment succession at Rautuvaara was deposited during the Weichselian Stage and there is no indication of older deposits. The SIS advanced across Finnish Lapland to adjacent areas to the east at least once during the Early Weichselian, twice during the Middle Weichselian (~MIS 4 and MIS 3) and once during the Late Weichselian substages. Glaciolacustrine sediments interbedded between the till units indicate that a glacial lake repeatedly existed after each deglacial phase. The results also suggest that there were two ice‐free intervals in northern Fennoscandia during the Middle Weichselian close to the SIS glaciation centre.  相似文献   

18.
The North Atlantic Younger Dryas climatic reversal did not cause a glacier advance on Mount Rainier. The glaciers on Mount Rainier seem to have advanced in response to regional or local shifts in climate. However, the Younger Dryas climatic reversal may have affected the Mount Rainier area, causing a cold, but dry, climate unfavorable to glacier advances. Glaciers in the vicinity of Mount Rainier advanced twice during late glacial/early Holocene time. Radiocarbon dates obtained from lake sediments adjacent to the corresponding moraines are concordant, indicating that the ages for the advances are closely limiting. The first advance occurred before 11,300 14C yr BP (13,200 cal yr BP). During the North Atlantic Younger Dryas event, between 11,000 and 10,000 14C yr BP (12,900 and 11,600 cal yr BP), glaciers retreated on Mount Rainier, probably due to a lack of available moisture, but conditions may have remained cold. The onset of warmer conditions on Mount Rainier occurred around 10,000 14C yr BP (11,600 cal yr BP). Organic sedimentation lasted for at least 700 years before glaciers readvanced between 9800 and 8950 14C yr BP (10,900 and 9950 cal yr BP).  相似文献   

19.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

20.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号