首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Eocene Hecho Group turbidite system of the Aínsa‐Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity‐bounded tectonostratigraphic units (TSU), consisting of quartz‐rich and feldspar‐poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU‐2, whereas calclithites and hybrid arenites occur in the overlying TSU‐3, TSU‐4 and TSU‐5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold‐and‐thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz‐rich and feldspar‐poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar‐rich and, to some extent, rock fragments‐rich sandstones), thrust‐and‐fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono‐stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins.  相似文献   

2.
Late early–early middle Miocene (Burdigalian–Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian‐Provençal basin. These processes created the accommodation for a distinctive continental to shallow‐marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint‐Florent and Francardo. The Burdigalian–Langhian sedimentary succession at Saint‐Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow‐marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian‐age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine‐derived detritus, with subordinate foreland‐derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint‐Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint‐Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica–Sardinia–Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian‐Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post‐collisional extensional tectonism, eustacy and competing drainage systems.  相似文献   

3.
The Pennsylvanian marine foreland basin of the Cantabrian Zone (NW Spain) is characterized by the unique development of kilometre‐size and hundred‐metre‐thick carbonate platforms adjacent to deltaic systems. During Moscovian time, progradational clastic wedges fed by the orogen comprised proximal alluvial conglomerates and coal‐bearing deltaic sequences to distal shelfal marine deposits associated with carbonate platforms (Escalada Fm.) and distal clay‐rich submarine slopes. A first phase of carbonate platform development (Escalada I, upper Kashirian‐lower Podolskian) reached a thickness of 400 m, nearly 50 km in width and developed a distal high‐relief margin facing a starved basin, nearly 1000‐m deep. Carbonate slope clinoforms dipped up to 30° and consisted of in situ microbial boundstone, pinching out downslope into calciturbidites, argillaceous spiculites and breccias. The second carbonate platform (Escalada II, upper Podolskian‐lower Myachkovian) developed beyond the previous platform margin, following the basinward progradation of siliciclastic deposits. Both carbonate platforms include: (1) a lower part composed of siliciclastic‐carbonate cyclothems characterized by coated‐grain and ooid grainstones; and (2) a carbonate‐dominated upper part, composed of tabular and mound‐shaped wackestone and algal‐microbial boundstone strata alternating at the decametre scale with skeletal and coated‐grain grainstone beds. Carbonate platforms initiated in distal sectors of the foreland marine shelf during transgressions, when terrigenous sediments were stored in the proximal part, and developed further during highstands of 3rd‐order sequences in a high‐subsidence context. During the falling stage and lowstand systems tracts, deltaic systems prograded across the shelf burying the carbonate platforms. Key factors involved in the development of these unique carbonate platforms in an active foreland basin are: (1) the large size of the marine shelf (approaching 200 km in width); (2) the subsidence distribution pattern across the marine shelf, decreasing from proximal shoreline to distal sectors; (3) Pennsylvanian glacio‐eustacy affecting carbonate lithofacies architecture; and (4) the environmental conditions optimal for fostering microbial and algal carbonate factories.  相似文献   

4.
Record of sea-level fall in tropical carbonates   总被引:3,自引:0,他引:3  
Stratigraphic forward modeling and comparison with published case studies have been used to determine the controls and stability domains of two conceptual models concerning relative sea-level fall in carbonate sequence stratigraphy. In the standard model, deposition occurs principally during rise and stillstands of relative sea level; a continuous erosional unconformity develops during sea-level fall. The falling-stage systems tract model (FST) postulates significant deposition during sea-level fall. Sedimentological principles, numerical models and published case studies of tropical carbonate sequences indicate that presence or absence of FST is not simply a function of the rate of sea-level fall but depends on the balance of the rates of erosion, sea-level fall and carbonate production, whereby the FST is favoured by high production, slow erosion and slow sea-level fall. Case studies plotted in the parameter space spanned by these variables support the modeling results. The ranges of rates required for the FST in the modeling runs are common in the geologic record. Consequently, the FST can be expected to be more common in tropical carbonate rocks than published records, particularly seismic data, currently indicate.  相似文献   

5.
Understanding the development of sedimentary systems during continental rifting is important for tracking environmental change and lithospheric processes. Conceptual models have been developed for the sourcing, routing and facies architecture of sediments in rift-settings, driven in part by quantitative sediment tracking. Here, we present laser ablation split-stream detrital zircon U/Pb geochronology and Hf-isotopes for post-rift (Cretaceous-Paleogene) clastic sediments from Ocean Drilling Program (ODP) wells and Plio-Pleistocene palaeoshoreline material, from the southern margin of Australia. Provenance results are contextualized through comparison with well-characterized source regions and regional pre- and syn-rift sediment reservoirs to track changes associated with Australia-Antarctica separation during East Gondwana break-up. The provenance character of the post-rift sediments studied are distinct from pre-existing sediment reservoirs and demonstrate termination of previously stable sediment routing systems and a dominance of local basement of the Proterozoic Madura and Coompana provinces (~1.2 Ga and CHUR-like Hf-signatures; Moodini Supersuite) in offshore ODP wells. A composite post-rift Cretaceous?-Eocene sample in the easternmost well expresses characteristic Phanerozoic zircon age signatures associated with source regions in eastern Australia that are interpreted to reflect inversion in the Ceduna Sub-basin to the east. Detrital zircon signatures in Plio-Pleistocene palaeoshoreline sediment are also relatively distinct, indicating derivation from coastal erosion in the Leeuwin Complex (~0.5 and 0.7 Ga subchondritic grains) and Albany–Fraser Orogen (~1.2 Ga subchondritic grains) several hundred, to over a thousand kilometers to the west. Collectively, results highlight the fundamental geological processes associated with rifting that dramatically change the character of sediment provenance via (a) isolation of pre-existing primary and secondary sources of detritus, (b) development of new source regions in basin compartmentalized highs and localized fault scarps, and (c) establishment of marine and coastal currents that redefine clastic sediment transport.  相似文献   

6.
Sedimentary bodies emplaced by mass‐wasting processes and exceeding tens of metres of thickness and a hundred of square kilometres in area are widespread in the Cretaceous–Pleistocene marine successions of the Northern Apennines of Italy. At least 10 such bodies are present in the stratigraphic record of the Oligo‐Miocene foredeep during the northeastern, time‐transgressive migration of the accretionary wedge‐foredeep system. The term mass‐wasting complex (MWC) is here adopted for these bodies to emphasize their multistory emplacement mechanism and polymictic composition with variously deformed slabs of different lithology, age and provenance. As one of the more intriguing features, their occurrence was associated with changes in turbidite deposition from basin plain to slope. Wide sectors of the internal margin of the basin (lobe‐fan) and even of the basin plain become a slope at the front of the accretionary wedge for a limited period of time (temporary slope). The temporary slope supplied the intrabasinal components of the MWCs, whereas the diffused extrabasinal components came from the front of the accretionary wedge. Therefore, an enhanced instability of the entire foredeep‐wedge system occurred systematically and cyclically. As a consequence, many variously consolidated sediments were transferred into the foredeep basin invading the depocentre and forcing the turbidite deposition towards the foreland, in a more northeasterly position. The presence of such MWCs therefore conditioned basin size and geometry in an analogous way as that reported for some modern convergent margins, as in the case of Costa Rica. Normal sedimentation was restored on top of the MWC only after the levelling of topographic irregularities.  相似文献   

7.
A. G. Plint     
《Basin Research》1988,1(1):11-22
Abstract Recent improvements in biostratigraphic and magnetostratigraphic control in the Eocene sediments of the Hampshire Basin prompted direct comparison of depositional sequences in outcrop with those predicted by the latest and most detailed Exxon coastal onlap chart. This study focused on the upper two cycles of the London Clay Formation, the Bracklesham Group and the Barton Formation, comprising nine depositional sequences, each a few 10s of metres thick. The sediments were divided into three basic facies associations: marine, estuarine and alluvial. Depositional sequences invariably rest on a regional erosion surface cut during sea-level lowstand. The lower part of each sequence consists typically of 'estuarine' sediments (including tidal channel, lagoon, tidal flat and marsh deposits), laid down under brackish conditions during the early stages of sea-level rise. Estuarine deposits are typically erosively overlain by marine shoreface or shelf deposits; the eroded, pebble-strewn contact marks the passage of the marine shoreface. Marine deposits may be erosively overlain by alluvial sediments that record coastal progradation in response to stable or slowly falling sea level. Magnetostratigraphy, in the form of truncated or absent magnetozones provides supporting evidence for significant erosion during periods of lowstand. Every sequence can be matched to the Exxon coastal onlap chart, with one exception, which, on biostratigraphic and magnetostratigraphic evidence has been shown to be absent from the Hampshire Basin. The Exxon chart suggests that in this exceptional instance, coastal onlap was insufficient to effect marine deposition in the Hampshire Basin.  相似文献   

8.
The sandstone petrography of sample suites from four sites spanning the Rurikfjellet (Hauterivian) to Carolinefjellet (Aptian-Albian) formations in central Spitsbergen was investigated. The sandstones show a distinct stepwise shift in composition from quartz arenites to sublitharenites and lithic arenites, typically within the upper part of the Helvetiafjellet Formation. This shift is related to the introduction of 10 - 25% (grain%) plagioclase grains and volcanic lithics, and a notable increase in basement and sedimentary lithics. Quartz grain character also changes, and grain shapes become more varied. The shift is also associated with the transgressive arrival of marine sediments in the area, and the introduction of sands from the east-northeast by shore-parallel transport. Regional regression and subsequent transgression, and the change in sandstone composition is attributed to the development of the High Arctic Large Igneous Province in the region. The relative constancy of sand composition and volume of volcanic detritus within the Carolinefjellet Formation suggests long term (∼20 M) stability of the sediment system and a large volcanic source area, consistent with LIP (Large Igneous Province) derivation, along with significant exposure of basement rocks. Sample spacing and sediment recycling and mixing do not allow detection of events that would have changed sandstone composition that were less than ∼1 M duration. Preservation of significant amounts of plagioclase in a sediment-starved shelf can be explained by relatively cold climatic conditions.  相似文献   

9.
A numerical model linking a coral growth algorithm and an algorithm for flexural subsidence reproduces many of the characteristics of drowned foreland basin carbonate platforms. This model successfully matches the observed distribution and drowning age of drowned carbonate platforms in the Huon Gulf, Papua New Guinea, a modern submarine foreland basin. Analysis of equations describing flexural subsidence and eustatic sea-level variations suggest that there are minimum convergence rates and periodicities of sea-level variation required to drown foreland basin carbonate platforms. For convergence rates on the order of a few millimetres per year, sea-level must vary on time-scales of about 105 years in order to induce a rate of relative sea-level rise great enough to drown an otherwise healthy foreland basin carbonate platform.  相似文献   

10.
《Geomorphology》2003,49(3-4):177-204
In this paper, a detailed study of the submarine geomorphology surrounding the Balearic Promontory (western Mediterranean), a northeast prolongation of the Neogene Betic Range in southern Spain, is presented from a series of high-resolution tools including swath bathymetry and seismic reflection profiling. The study identifies the main features of the continental shelf, slope and basins surrounding the Balearic Islands. We show a variety of seafloor relief that owes its origin to several geologic processes, which ultimately control the transport of sediment from the shallower areas to the deep basin. The most important processes are erosion of the shelf and upper slope (terraces associated with different Quaternary sea-level stands and canyons), transport and sediment deposition in the lower slope and base-of-slope by turbidity currents, volcanism and instability processes (landslides scarps and debris lobes). The swath data show that tectonics plays an important role in shaping the submarine slopes of Eivissa and Formentera, the two southernmost islands, as well as its interplay with sedimentary processes, especially mass wasting. Finally, several areas show evidence of pockmarks, which indicate that fluid migration take place in the sediments, probably conditioning several other processes such as mass wasting.  相似文献   

11.
Shell-Agip 35/13–1 well drilled 2445 m of Tertiary sediments in the Main Porcupine Basin situated offshore west of Ireland. Early Tertiary sediments and microfossils indicate a major cycle from deep-sea to marginal marine and terrestrial palaeoenvironments returning to deep water. By means of seismic and lithostratigraphy and petrophysical logs, three deltaic cycles can be distinguished within this major cycle. The microfaunal zonation indicates that these cycles are of late Palaeocene, early Eocene and mid/late Eocene age and, therefore, correlate broadly with the Thanet Cycle, London Clay Cycle and the Bracklesham Cycles of the Anglo-French type sections, although they are up to an order of magnitude thicker due to rapid basin subsidence. Three major unconformities can be distinguished together with a disconformity that becomes an unconformity in the North Porcupine Basin. These surfaces are associated with both local and regional tectonic and igneous events. Detailed microfossil and lithological analyses across the major unconformities allows a reasonable matching with the global sea-level curve and recognition of the major and medium sequence boundaries. Discrepancies during the late Eocene may relate to local faulting. The pattern of sedimentation reflects the restriction of North Atlantic circulation and the tendency to euxinic bottom conditions during the early Palaeogene. In the middle Thanetian these conditions invaded the shelf, an event recorded elsewhere in NW Europe. Discontinuous seismic reflectors indicate ‘chaotic’ sedimentation connected with more vigorous circulation and erosion in the early Oligocene. This was followed by a change to parallel bedded contourites and drifts after the cutting of the early Miocene unconformity. The study reveals the complex interplay of eustatic and oceanographic change with local and regional tectonics in the development of the basin.  相似文献   

12.
Subsidence and provenance analysis has been used as a tool to quantify and discriminate the role of tectonics and eustasy in the Veneto and Friuli Basin, north-east Italy, using 17 sections distributed along east–west-trending outcrops of Oligo-Miocene deposits. The basin can be considered a two-phase foreland; first, during late Oligocene to Langhian with respect to the NW–SE-trending Dinaric Chain, and then with respect to the south-vergent South-Alpine Chain.The clastic succession is up to 4000 m thick, and was deposited in a generally shallow-marine to nonmarine environment. Subsidence diagrams reconstructed for each section and E–W subsidence profiles indicate a compound effect of the Dinaric and South-Alpine tectonics as well as interference with eustatic sea-level changes.During the Oligocene and the early Miocene, the cycles recognized within the basin approximately match sea-level curves, the inferred cyclicity being primarily eustatic. However, the westward migration of the sedimentary depocentre during the same interval of time indicates activity of Dinaric thrusts.From Burdigalian (20 Ma) onwards, differential subsidence between the northernmost and the southernmost sectors of the basin suggests initiation of South-Alpine uplift in the frontal parts. During Tortonian and early Messinian uplift, erosion and southward migration of the thrust system was associated with the progressive closure of the basin from open marine influence. During Messinian sea-level drop, up to 2500 m of alluvial sediments were deposited at the same time as the South-Alpine thrusts were emerging, as confirmed by progressive angular unconformities within the continental succession.  相似文献   

13.
Our understanding of the formation of the wide range of sequence architectures we observe in the rock record is still somewhat limited. The sedimentary response to the complex interaction of various time-variable basin-scale processes such as subsidence, eustasy and sediment supply is difficult to understand without numerical models. The computer simulation model presented here, DEMOSTRAT, is a powerful tool to investigate the sequence development scenarios in a 2-D dip section. The model includes tectonic subsidence, eustasy, two-component (sand and mud) nonlinear diffusional sediment transport, compaction and isostasy. The transport coefficients in the diffusion equations express the system's ability to transport sand and mud, and are mainly dependent on climate and subaquatic processes. Keeping other model input parameters constant, the magnitude of transport coefficients seems to have an important impact on sequence development. With high transport coefficients, extensive erosion during sea-level fall and lack of sediment buildup above sea-level during rise may reduce the preservation potential for nonmarine sediments. In addition, the former slope break will be eroded during transgression, forming sand-rich slope or basin floor sediments that may be misinterpreted as lowstand fans. Moreover, the magnitude of transport coefficients has an impact on unconformity timing and development (shown in Wheeler plots).
  相似文献   

14.
Deposition of a 2700-m-thick clastic platform succession in a N-S striking basin in northern Chile began in the Early Devonian during a global sea-level rise. A transition to terrestrial facies took place at the Early-Late Carboniferous boundary when the Gondwana glaciation began and global sea-level dropped. On the platform, interbedded cross-bedded or bioturbated sandstones, offshore tidal dunes and sand waves, and mudstones and tempestites suggest switching intertidal and shallow or deep subtidal environments. However, evidence for subaerial erosion indicates a significant regression during the Early Devonian. In an adjacent and deeper N-S striking sub-basin to the W, up to 3600 m of turbidites were deposited from the Late Devonian to the Late Carboniferous by mainly southerly palaeocurrents. Turbidites accumulated in coarse-grained proximal sand lobes in the N, and in fine-grained lobe fringe and basin plain environments in the S, with alternating upward-thinning and upward-thickening cycles typical of tectonically controlled aggradational turbidite systems. The sedimentological data indicate that the deeper basin depositional system evolved to a large extent independently from the platform system. Sediment in the deeper basin is less mature and more poorly sorted than that on the platform, suggesting that detritus bypassed the platform and was shed directly from the source areas into the western basin. The only depositional link between the platform and deeper basin systems seems to be longshore platform currents which may have funnelled minor quantities of mature sand into the deeper basin via bypass canyons. Although platform and deeper basin evolved in a common extensional tectonic setting, the platform reflects eustatic changes of sea-level whereas deposition in the deeper basin records syndepositional tectonics.  相似文献   

15.
The effect of various erosional processes on the relief development of a carbonate platform margin is documented from outcrops of the Southern Alps, northern Italy, by the occurrence of truncation surfaces and redistribution of remobilized sediments. The periplatform depositional history, with periods of intensive submarine erosion along the north-western Trento plateau margin, is recorded by various carbonate deposits ranging in age from the Early Jurassic to Late Cretaceous with numerous gaps. The first Early Jurassic period of submarine erosion is marked by truncation and extensive tectonic fracturing of lower Liassic oolitic skeletal periplatform deposits. These are overlain by pelmicritic sediments of late Hettangian to Toarcian age. The second period of submarine erosion during the late Early Jurassic resulted in almost complete truncation of the pelmicritic unit. Crinoidal to oolitic periplatform carbonate sands were subsequently deposited along the carbonate margin until the Aalenian/Bajocian. The third truncation surface was produced by partial current erosion of the crinoidal to oolitic periplatform deposits during the late Bajocian to Callovian. The fourth, and most prominent, truncation surface was produced by erosion during the Early Cretaceous cutting down from Aptian/Albian pelagic units to Toarcian periplatform deposits. The resulting submarine relief was completely buried during the late Maastrichtian by onlapping pelagic sediments. The documentation of the depositional history during the Late Mesozoic of the north-western Trento plateau pinpoints the main mechanisms responsible for the relief of the drowned carbonate platform margin. Extensional tectonic activity during differential subsidence and current-induced erosional truncation, followed by gravitational downslope mass transport and rapid pelagic burial mainly determined the morphology of the drowned carbonate platform margin.  相似文献   

16.
This paper presents data on the sedimentation processes and basin-fill architecture in an incipient submarine intrabasinal graben, the Strava graben. The Strava graben is a relatively small intrabasinal structure about 15 km long and 3 km wide formed some time during the late Pleistocene. It connects the Alkyonidhes basin to the Corinth basin, in the Aegean back arc, which is characterized by fast rates of extension and intensive seismicity. Analysis and interpretation of high-resolution 3.5-kHz and sparker profiles together with sonar imagery have shown that gravity-driven sediment transport, triggered by earthquakes, is the dominant sedimentation process and that this sediment forms the vast bulk of the basin-fill. The sediment deposited in the Strava graben is derived from the uplifted footwall blocks bounding the graben and is transported to the basin initially as liquefied flows, some of which may progressively evolve to turbidity flows. The deposits of the liquefied flows have accumulated in the graben floor as aggradational stacks, consisting of sheet-like, low-relief lobes, forming base of slope aprons that are fed by multiple sediment sources along active faults. In addition to the lateral (footwall-derived) sediment transport there is also a gravity-controlled axial transport. The axial transport has formed a depositional system in the down-dip termination of the Strava graben, where it enters the Corinth basin. The axial depositional system grows outwards and upwards and consists of liquefied flow depositional lobes which are separated by turbidites. The sedimentation transport processes and basin infilling style described for the Strava graben can be used as a predictive model for the early synrift stage of ancient submarine intrabasinal structures, in which the major sediment source area is the bounding fault scarps and not drainage basins in the hinterland.  相似文献   

17.
Achieving a reliable closure time of a back-arc ocean is an essential aspect in studies on detailed tectonic processes of an active continental margin and arc–continent collision. This is particularly the case for the northern Qinling Orogen, which records the accretion of the North Qinling Arc (NQA) onto the North China Block (NCB) after the Erlangping back-arc ocean closure. Sedimentological, petrological and geochronological signatures from the Ordovician successions in the southern Ordos reveal a tectonic transition from passive continental margin to peripheral foreland in the southern NCB at the beginning of Katian. Sedimentological and geochronological investigations reveal an abrupt shift of accelerating basin subsidence and deepening at the earliest Katian, separating ca. 300-m-thick shallow-marine carbonate shelf assemblages from overlying ca. 2000-m-thick deep-water carbonate slope and turbidite associations. Zircon age spectra of the Katian turbidites are characterized by early-Palaeozoic and Neoproterozoic age clusters, which are different from those of the Middle Ordovician quartz arenites sourced merely from the NCB basement. Instead, these age patterns match well with those of the coeval successions in the northern NQA, indicating a spatially linked abyssal deposystem. Stratigraphic architecture deciphers a typical foreland basin geometry, involving, from south to north, northward-propagating turbiditic wedge, northward-backstepping carbonate slope and progressively shoaling carbonate platform, embodying foredeep, forebulge and backbulge, respectively. These characteristics of basin-fill evolution reflect the northward migration of the flexural wave as a dynamic response to the northward expansion of the thickened NQA thrust wedge. Together with the other geological and geochronological data, our new insights indicate a southward subduction polarity of the Erlangping back-arc oceanic crust followed by its termination at ca. 450 Ma, which was earlier than that of the main Proto-Tethyan Shangdan Ocean between the NCB and South China Block. Our new data provide an updated view of the complex history of the Proto-Tethys closure during the Gondwana assembly.  相似文献   

18.
Abstract The Jurassic-Cretaceous subsidence history of the Eromanga Basin, a large intracratonic sedimentary basin in central eastern Australia, has been examined using standard backstripping techniques, allowing for porosity reduction by compaction and cementation. Interpretation of the results suggests that during the Jurassic the basin was subsiding in a manner consistent with the exponentially decreasing form predicted by simple thermally based tectonic models. By the Early Cretaceous, the rate of subsidence was considerably higher than that expected from such models and nearly half of the total sediment thickness was deposited over the final 20 Myr of the basin's 95 Myr Mesozoic depositional history. The Early Cretaceous also marks the first marine incursion into the basin, consistent with global sea-level curves. Subsequently, however, the sediments alternate between marine and non-marine, with up to 1200 m of fluvial sediments being deposited, and this was followed by a depositional hiatus of about 50 Myr in the Late Cretaceous. This occurred at a time when global sea-level was rising to its peak. A model is presented which is consistent with the rapid increase in tectonic subsidence rate and the transgressive-regressive nature of the sediments. The model incorporates a sediment influx which is greater than that predicted by the thermally based tectonic models implied by the Jurassic subsidence history. The excess sedimentation results in the basin region attaining an elevation which exceeds that of the contemporary sea-level, and thereby giving the appearance of a regression. The present day elevation of the region predicted by the model is about 100–200 m above that observed. This discrepancy may arise because the primary tectonic subsidence is better represented by a linear function of time rather than an exponentially decreasing form.  相似文献   

19.
Analysis of shelf‐edge trajectories in prograding successions from offshore Norway, Brazil, Venezuela and West Africa reveals systematic changes in facies associations along the depositional dip. These changes occur in conjunction with the relative sea‐level change, sediment supply, inclination of the substratum and the relief of the margin. Flat and ascending trajectories generally result in an accumulation of fluvial and shallow marine sediments in the topset segment. Descending trajectories will generally result in erosion and bypass of the topset segment and deposition of basin floor fans. An investigation of incised valley fills reveals multiple stages of filling that can be linked to distinct phases of deepwater fan deposition and to the overall evolution of the margin. In the case of high sediment supply, like the Neogene Niger and Orinoco deltas, basin floor fans may develop systematically even under ascending trajectory styles. In traditional sequence stratigraphic thinking, this would imply the deposition of basin floor fans during a period of relative sea‐level highstand. Facies associations and sequence development also vary along the depositional strike. The width and gradient of the shelf and slope show considerable variations from south to north along the Brazilian continental margin during the Cenozoic. During the same time interval, the continental shelf may display high or low accommodation conditions, and the resulting stacking patterns and facies associations may be utilized to reconstruct palaeogeography and for prediction of lithology. Application of the trajectory concept thus reveals nuances in the rock record that would be lost by the application of traditional sequence stratigraphic work procedures. At the same time, the methodology simplifies the interpretation in that less importance is placed on interpretation and labelling of surface boundaries and systems tracts.  相似文献   

20.
实验研究了不同溶剂(盐酸、醋酸、饱和EDTA-2Na盐等)对沉积物样品中的碳酸盐组分硼元素提取和硼同位素组成的影响。结果表明,1 mol/L的醋酸是溶解沉积物样品中碳酸盐组分的最佳溶剂,能将沉积物中的碳酸盐完全溶解,并有效避免样品中石膏、硅酸盐等矿物的溶出,对其中铁的氧化物等影响也比较小;同时,在过硼特效树脂前将溶液调至弱碱性所用的亚沸氨水的量较少,从而引入的本底较少。采用盐酸和饱和EDTA-2Na溶液溶解沉积物,容易将沉积物中除碳酸盐以外的矿物中的硼溶出,如石膏、硅酸盐矿物等,不利于碳酸盐组分中硼的提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号