共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
太阳射电爆发的起因:耀斑或/和日冕物质抛射 总被引:2,自引:0,他引:2
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程 相似文献
3.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β〉βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体 相似文献
4.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β>βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体的不断离化,高能相对论电子绕开放磁场线作螺旋飞行,这时等离体辐射降到次要地位,回旋同步加速辐射上升到主导地位,这就是射电Ⅳ型运动爆发。如果离化的早,则在微波波段也能看到Ⅳ型运动爆发。这就是微波Ⅳ型爆发,也是微波Ⅳ型爆发罕见的原因。射电运动Ⅳ型爆发源就是日冕抛射的物质。 相似文献
5.
232MHz太阳爆发与日冕物质抛射 总被引:1,自引:0,他引:1
利用综合孔径射电望远镜的232MHz观测太阳,具有3.8’的空间分辨率,20ms的时间分辨率和高灵敏度及很好的抗干扰能力。1999年共观测到12次大爆发,其中8次与日冕物质抛射相关,可以利用米波射电爆发预报CME事件。 相似文献
6.
7.
利用综合孔径射电望远镜在 232 MHz观测太阳,具有 3·8’的空间分辨率、 20 ms 的时间分辨率和高灵敏度及很好的抗干扰能力.1999年共观测到12次大爆发,其中8次与日冕物质抛射相关.可以利用米波射电爆发预报CME事件. 相似文献
8.
统计分析了云南天文台在22周峰年期间观测到的米波Ⅲ型射电爆发与光学活动的关系,发现在230 ̄300MHz频率范围的米波Ⅲ型爆发与Hα耀斑的关系是密切的,Ⅲ型爆发的产生与双极磁结构和复杂型黑子活动区也密切相关。并对统计结果作了讨论。 相似文献
9.
作为一种大尺度的太阳高能活动现象,日冕物质抛射(CME)的发现令人瞩目,其强烈的行星际和地球物理效应更引起了天文、空间和地球物理学家的共同关注。在本文中介绍了自CME发现以来的22年中观测和研究所取得的进展,以及它给太阳物理学带来的影响,并分析了研究工作所面临的困难和障碍,展望了CME研究的前景。 相似文献
10.
日冕物质抛射与共生射电爆发的地面和空间联测研究 总被引:1,自引:0,他引:1
引述了近年来太阳和空间物理的一大研究成果;产生日地空间射电爆发和地球物理响应的主因不是太阳耀斑,而是日冕物质抛射(CME),论述了射电爆发在研究CME中的作用;分析了1991-06-15CME事件中射电爆发和质子事件产生的物理过程;介绍了地面/空间对CME和共生射电爆发联测研究的新进展;提出了我国今后开展地面/空间联测研究的设想和建议。 相似文献
11.
12.
对云南天文台高分辨率率频谱仪在22周峰年期观观测到的米波准周斯振荡事件,与光学活动及相关事件作了统计分析,得到一些有意义的结果。 相似文献
13.
日晚物质抛射是近二十年来太阳物质研究中的一个较为活跃的课题,本文系统地阐述了这一领域研究意义、内容、方式及所取得的成果、并通过第五、六两章的分析对CMEs与耀斑及活动周的关系作了更进一步的研究。 相似文献
14.
15.
16.
王家龙 G.J.Nelson N.R.Sheeley Jr. R.A.Howard M.J.Koomen D.J.Michels K.Kawabata H.Ogawa 《中国天文和天体物理学报》1989,(3)
本文比较了1982年2月9日同时观测到的两个爆发日珥及一次白光日冕物质抛射事件。比较表明,在研究日冕物质抛射事件与爆发日珥的关系时,爆发日珥的形状可能是一个重要的因素,它体现了局部区域磁场结构的变化。作者提出了一种可能的磁场结构模型,对观测结果给以解释。 相似文献
17.
18.
统计分析了23周太阳活动峰年期间(1998.12~2002.12)记录到的米波Ⅱ型爆发,与Ha耀斑和日冕物质抛射(CME)事件的关系。统计发现:持续时间长的Ha耀斑和CME与Ⅱ型爆发比与Ⅲ型爆发的相关性好;伴随Ⅱ型爆发的CME可发生在Ha耀斑之前或之后,且91%的长寿命耀斑发生在CME之前。平均在前23分钟;伴随Ⅱ型爆发的Ha耀斑的能量随着CME的速度增大而变强。对这些观测特征作了定性的解释。 相似文献
19.