首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
岩浆岩中的熔体包裹体   总被引:15,自引:1,他引:15  
夏林圻 《地学前缘》2002,9(2):403-414
熔体包裹体是岩浆岩矿物生长过程中捕获的天然岩浆珠滴 ,它们有效地保存了大量有关其主矿物形成时周围岩浆介质的物理化学信息 ,所以它们是其主矿物结晶演化史的忠实记录员 ,它们能够提供岩浆系统成分和演化的重要信息。文中对熔体包裹体研究的若干基本原理进行了讨论 ,它们涉及 :(1)熔体包裹体的一般特征 ;(2 )熔体包裹体封闭过程中和封闭后的演化 ;(3)熔体包裹体的均一化研究 ;(4 )熔体包裹体化学成分和挥发组分研究。熔体包裹体研究可以对岩浆岩石学中的一些重要问题进行更为深入的探索 :(1)重建天然岩浆结晶演化的热历史 ;(2 )提供有关岩浆沿下降液相线的成分数据 ;(3)查明天然岩浆结晶演化过程中化学成分的变迁规律 ;(4 )解决岩浆岩石学中的一些疑难问题 ,如岩浆不混溶作用、岩浆混合作用、岩浆混染作用、岩浆中硫的性状、地幔部分熔融和地幔交代作用等方面的问题。将熔体包裹体数据和常规的岩石学、地球化学和实验岩石学信息综合一体 ,可以提高我们模拟岩浆作用过程的能力。熔体包裹体研究已经成为现代岩浆岩石学的一个独立的分支 ,其前景十分广阔。  相似文献   

2.
<正>熔体包裹体由寄主矿物在结晶生长过程中圈闭、捕获岩浆系统的熔体而形成,其保存了岩浆房在熔体被捕获瞬间的物质组成,因此熔体包裹体对研究火山系统的岩浆演化过程有重要意义。产于南大西洋15°S(SMAR15°S)热液区的玄武岩斜长石中,存在丰富的熔融包裹体;通过对熔融包裹体的能谱研究,我们首次在熔融包裹体内发现了较多的金属子矿物。  相似文献   

3.
<正>近现代对于熔体包裹体(melt inclusion)的研究已经有50余年,但它们在反映岩浆系统特征方面的价值是直至最近10~15年间才逐渐被火山学家,岩石学家和包裹体学者所意识到。熔体包裹体的研究结果之所以难以被接受主要有以下几个因素:(1)缺乏可靠的分析技术;(2)熔体包裹体捕获后会发生一系列的变化;(3)有的包裹体中熔体存在不均匀的现象;(4)较高的均一温度,很难测定。但随着分析方法的改进和熔体包裹体的系统研究的进展,学者们逐渐确定了熔体包裹体在解开岩浆系统  相似文献   

4.
流体熔融包裹体   总被引:22,自引:5,他引:22  
卢焕章 《地球化学》1990,(3):225-229,T001
流体熔融包裹体是一种新类型,它代表岩浆分异热液的过程。 按室温时的相态和成分可分四种:1.气相+液相+熔体相的流体熔融包裹体;2.熔融包裹体与流体包裹体共存;3.熔融包裹体周围有细小的流体包裹体群;4.含易溶盐子矿物+气相+熔融体的流体熔融包裹体。  相似文献   

5.
熔体包裹体由被封存在矿物中的原始岩浆组成,有效的保存了有关其主矿物形成时周围岩浆介质的物理化学信息,是研究岩浆演化和成矿作用的原始样品。本文以内蒙古巴尔哲超大型稀有稀土金属矿床中伟晶岩壳和石英斑晶中的熔体包裹体和流体-熔体包裹体为研究对象,使用高温热台和激光拉曼进行分析。结果显示熔体包裹体的熔融温度在750~1027℃之间(平均为916℃),熔体-流体包裹体的均一温度在475~650℃之间(平均为562℃),而包裹体内的硅酸盐矿物和稀土矿物的存在表明巴尔哲岩体的岩浆-热液演化及其对稀有稀土矿化的制约。  相似文献   

6.
为进一步研究MORB斜长石熔体包裹体的形成机制,结合南大西洋中脊19°区域附近与Pet DB中MORB斜长石熔体包裹体数据,对Ca/Al值在斜长石熔体包裹体形成与改造过程中的变化规律进行讨论。结果显示,Ca/Al值可指示斜长石熔体包裹体形成过程中的化学分异作用、寄主结晶作用与扩散再平衡作用;当MORB斜长石熔体包裹体的Ca/Al0.85(或0.80)时,熔体包裹体不能代表MORBs未分异的原始岩浆或结晶分异后的演化岩浆,SMAR19°研究区中MORB斜长石熔体包裹体的Ca/Al1.0,其组分不能代表被捕获时的原始熔体。  相似文献   

7.
东天山地区的二叠纪玄武岩沿着区域的北东东向断裂呈脉状分布,吐哈盆地玄武岩的40Ar-39Ar坪年龄为298.2±3.8Ma,为早二叠世,与前人的玄武岩年龄结果在误差范围内一致。可能与东天山地区二叠纪岩浆铜镍矿床镁铁-超镁铁岩有密切的成因联系。吐哈玄武岩的主微量成分显示其为岛弧拉斑、大陆弧玄武岩,轻稀土富集和Nb、Ta负异常,指示源区可能经历过俯冲作用的改造。吐哈盆地二叠纪玄武岩含有新鲜的橄榄石和长石斑晶,橄榄石斑晶中熔融包裹体较发育。熔融包裹体为玻璃质、气相和玻璃质、气相、固相两种类型。包裹体中不透明矿物主要为磁铁矿,说明捕获包裹体时岩浆的氧逸度和Fe含量较高。熔融包裹体分为高MgO和低MgO含量两种。高MgO含量的包体同时具有低SiO_2、低微量和稀土元素含量的特征,可能为地幔高部分熔融的产物,且经历过深部演化程度较弱。该高MgO熔体的微量元素显示Nb、Ta亏损的特征,具有N-MORB特征的微量和稀土元素分配模式,预示该熔体为受到俯冲交代的地幔熔融形成。熔融包裹体相对玄武岩具有低的Th和Ta含量、相对弱的Nb和Ta的负异常的特征,指示熔融包裹体的成分经受改造程度低于玄武岩,暗示可能为经历过较少后期作用改造的相对原始的熔体。熔体中Cu含量(12.4×10~(-6)~299×10~(-6))在正常玄武质岩浆含量范围内,而Ni含量(236×10~(-6)~697×10~(-6))高于高镁溢流科马提岩和洋中脊玄武岩。该Cu、Ni含量略显解耦的熔体可能代表了经历过深部少量的硫化物熔离,带走小部分Cu和Ni等成矿元素之后所捕获的岩浆。如果将该熔体视为东天山地区二叠纪岩浆铜镍硫化物矿床的母岩浆,该母岩浆中Ni含量相对较高可能是岩浆铜镍硫化物矿床中矿石的Ni/Cu比值大多大于1.0的主要因素。  相似文献   

8.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

9.
挥发分(例如H2O、CO2、F、Cl和S)是地幔的重要组成部分,虽然它们在地幔中的含量很低,但是在地幔熔融和熔体演化、地幔不均一、地幔流变学、地幔地震特性和电导率等研究方面具有重要作用。对矿物熔体包裹体和玻璃挥发分的研究已经成为当前的研究热点。其中,熔体包裹体研究凭借其独特的优势成为研究地幔和岩浆挥发分组成的重要手段。熔体包裹体直接捕获了矿物形成时岩浆中的成分,且由于寄主矿物的存在使得熔体包裹体能够保持独立演化而不受外界环境影响,因此能够较为完整地保存岩浆中的挥发分信息。同时,研究熔体包裹体中的挥发分是恢复岩浆喷发前挥发分含量最直接的途径。如果通过现代分析方法(如扫描电镜、电子探针和离子探针等)对熔体包裹体进行详细的岩相学观察以及对后期可能影响熔体包裹体原始挥发组分的作用(地壳混染、岩浆去气、扩散和水化作用)进行评估,并结合实验研究熔体包裹体被捕获后发生的变化而对数据进行矫正,那熔体包裹体对研究岩浆体系中的挥发分将大有可为。基于此,本文系统介绍了熔体包裹体挥发分研究的现状及主要研究内容,主要包括熔体包裹体挥发分的测试方法、挥发分在岩浆中的溶解度、判断挥发分数据可靠性和挥发分研究的经典应用等4个方面。  相似文献   

10.
西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分   总被引:13,自引:0,他引:13  
借助高温高压技术与电子探针分析,首次获得黑钨矿-石英脉绿柱石中晶质熔融包裹体的主要成分。熔融包裹体的成分主要是SiO2和Al2O3(分别平均为70.72%和13.94%)及少量K2O(2.0%),其他氧化物含量甚低,并且含有大量的挥发分(主要是H2O,达11.56%)。激光拉曼光谱分析表明,熔融包裹体液相中CO2、H2S等含量不高(分别为7.8%和4.3%),气相部分主要是一些还原性气体。熔融包裹体代表HF-H2O-花岗岩体系结晶分异最后阶段残余熔融体的成分,证实脉钨矿床的成矿流体不是单一的热水溶液,而是硅酸盐熔体与超临界流体共存的岩浆-热液过渡性流体,其成矿作用始于岩浆-热液过渡阶段。  相似文献   

11.
岩浆到热液演化的包裹体记录——以骑田岭花岗岩体为例   总被引:1,自引:2,他引:1  
骑田岭花岗岩是燕山期花岗岩早期多阶段侵入复式岩体,岩石化学的研究表明它是富碱的、高分异的A型花岗岩,形成于板内拉张的构造环境。在其第二阶段中细粒黑云母花岗岩内广泛发育着厘米级至米级似伟晶岩囊状体和石英晶洞, 它们是富挥发份岩浆固结的产物,代表岩石形成过程经历了明显的岩浆-热液过渡阶段。包裹体显微岩相学研究在骑田岭黑云母花岗岩的石英中发现熔体-流体包裹体和流体包裹体共存,这一结果进一步证实骑田岭中细粒黑云母花岗岩中的似伟晶岩囊状体和石英晶洞是花岗质熔体在岩浆-热液过渡阶段的产物。显微测温结果显示,熔体-流体包裹体的捕获温度大于530℃,说明岩浆热液过渡阶段的温度不低于该温度;闪锌矿中流体包裹体的均一温度在285~417℃之间,盐度为11.7% NaCleqv,代表了成矿流体的温度和盐度;流体包裹体的均一温度为172~454℃,代表热液阶段流体的温度。从中细粒黑云母花岗岩到似伟晶岩囊状体再到石英晶洞,岩浆-热液体系经历了富挥份熔体→熔体+高盐度流体→高盐度流体→低盐度流体的完整演化过程,形成了CaCl2-NaCl-H2O-CO2体系的岩浆热液流体。包裹体岩相学及激光拉曼探针分析结果显示,在流体包裹体和多晶熔体-流体包裹体中含有长石、方解石、金红石及金属氧化物等子矿物,暗示其所捕获的流体具有较强的成矿能力。  相似文献   

12.
西华山钨矿床中熔融包裹体的初步研究与矿床成因探讨   总被引:10,自引:2,他引:10  
过去一直认为西华山黑钨矿石英脉是高中温热液充填而成。研究发现,在黑钨矿石英脉的绿柱石中存在与流体(气液)包裹本共生的流体-熔体包裹体和熔融包裹体,表明形成黑钨矿石英脉的成矿流体是一种岩浆-热液过渡性流体,并讨论了熔融体与金属成矿作用的关系。  相似文献   

13.
吉伯特铁矿是新疆阿勒泰地区产于泥盆纪海相火山岩中的小型矿床。本文对吉伯特铁矿床的包裹体开展了研究,识别了熔体包裹体、熔体-流体包裹体以及富晶体的流体包裹体,并对其进行了初步的显微测温、激光拉曼光谱和电子探针等研究。熔体包裹体中含有富Si玻璃质、贫Si富Fe熔体、石英、萤石、方解石、磁铁矿等多种成分,它们分别组成不同的包裹体组合。熔体包裹体、熔体-流体包裹体和流体包裹体的存在表明它们被捕获时是一种熔体与流体共存的不混溶状态,这充分说明了吉伯特铁矿床的形成与岩浆熔体、岩浆-热液过渡性流体有直接的成因联系。吉伯特铁矿床中Fe的矿化是一个熔体相逐渐减少,流体相逐渐增加的连续演化过程,它受岩浆作用、岩浆-热液过渡性流体以及矽卡岩作用的共同制约。  相似文献   

14.
甘肃天祝干沙鄂博稀土矿床产于霓辉正长岩和霓辉正长斑岩中,矿体形态呈不规则脉状、透镜状和板状。成矿过程可分为岩浆期、岩浆-热液期、热液期和表生期,其中岩浆-热液期为主要成矿期。本矿床中的包裹体有熔体包裹体、流体-熔体包裹体、H_2O包裹体、CO_2包裹体、CO_2-H_2O包裹体、含子矿物H_2O包裹体和含子矿物CO_2-H_2O包裹体7类,并以富含流体-熔体包裹体、CO_2-H_2O包裹体为显著特征。包裹体组合从熔体包裹体→流体-熔体包裹体、H_2O包裹体、CO_2包裹体和CO_2-H_2O包裹体→H_2O包裹体的变化,反映本矿床的形成经历了从岩浆→岩浆+热液→热液的演化过程。岩浆期熔体包裹体均一温度为780℃;岩浆-热液期均一温度为191~700℃,盐度为5.26%~22.24%,属中低盐度,成矿压力为68~95 MPa,相应的成矿深度为2.6~3.6 km;热液期均一温度为129~225℃,盐度为0.35%~7.73%,为低盐度。从岩浆期到岩浆-热液期再到热液期,温度逐渐降低,矿化作用主要发生在岩浆-热液期,属中高温、中深成岩浆-热液过渡型矿床。  相似文献   

15.
岩浆熔体包裹体研究进展   总被引:2,自引:0,他引:2  
王蝶  卢焕章  单强 《岩石学报》2017,33(2):653-666
近现代对于熔体包裹体的研究已经有50余年,但它们在反映岩浆系统特征方面的价值是直至最近10~15年间才逐渐被火山学家、岩石学家和包裹体学者所意识到。熔体包裹体的研究结果之所以难以被接受主要有以下几个因素:1)缺乏可靠的分析技术;2)熔体包裹体捕获后会发生一系列的变化;3)包裹体中熔体存在不均匀的现象;4)较高的均一温度,很难测定。但随着分析方法的改进和熔体包裹体的系统研究,学者们逐渐确定了熔体包裹体在解开岩浆系统复杂性方面的实用性,可以这么说"熔体包裹体的研究正值当年"。例如:现代的研究提供了岩浆中溶解和出溶的挥发分含量的不可否认的证据,并且从熔体包裹体中得到的气相、盐类卤水和岩浆不混溶信息证明岩浆的相分离远比从结晶相图中推论得到的要复杂得多;包裹体岩相学已详细地描绘了熔体包裹体捕获之后经历的特定变化——结晶,挥发分的扩散,气相出溶,以及泄露等。因此,如果有细致的包裹体岩相学的观察以及精确的测试分析,那么,从熔体包裹体中得到的成分数据是有用且可靠的。  相似文献   

16.
在喜马拉雅碰撞造山带中,石榴石是变泥质岩的主要造岩矿物,也是花岗岩或淡色体的重要副矿物,保存了有关地壳深熔作用的关键信息,是揭示大型碰撞造山带中-下地壳物质的物理和化学行为的重要载体。在喜马拉雅造山带内,新生代花岗质岩石(淡色花岗岩和混合岩中的淡色体)含两类石榴石,大多数为岩浆型石榴石,自形-半自形,不含包裹体,但淡色体中含有港湾状的混合型石榴石。岩浆型石榴石具有以下地球化学特征:(1)从核部到边部,显示了典型的"振荡型"生长环带;(2)富集HREE,亏损LREE,从核部到边部,Hf、Y和HREE含量降低;(3)显著的Eu负异常;(4)相对于源岩中变质石榴石,Mn和Zn的含量显著增高。岩相学和地球化学特征都表明:变泥质岩熔融形成的熔体(淡色体)捕获了源岩的变质石榴石,熔体与石榴石反应导致大部分元素的特征被改变,只在核部保留了源岩的部分信息。同时,在花岗质熔体结晶过程中,形成少量的岩浆型石榴石。这些石榴石摄取了熔体中大量的Zn,浓度显著升高,在斜长石和锆石同步分离结晶作用的共同影响下,石榴石中Eu为明显负异常,Hf、Y和HREE浓度从核部到边部逐渐降低。上述数据和结果表明,花岗岩中石榴石的矿物化学特征记录了精细的有关花岗岩岩浆演化的重要信息。  相似文献   

17.
南极罗斯岛地区玄武岩中包裹体研究   总被引:1,自引:1,他引:1  
南极罗斯岛玄武岩中分布着三种熔融包裹体(结晶质熔融包裹体、流体-熔融包裹体和玻璃质熔融包裹体)和CO_2流体包裹体。流体-熔融包裹体是一种新类型,它代表了从岩浆分异出热液的过程。本次研究中还发现了玄武岩浆的不混溶性,从而形成了富含K、Na和富含Fe、Mg的两种不同成分的岩浆。玄武岩中熔融包裹体的均一温度在1190—1350℃,其形成压力大于7.2—7.5 kbar。发现许多包裹体爆裂并有次生熔融包裹体形成,这证明玄武岩可能来自下地壳或上地幔。在这么深的地方形成的玄武岩浆分异出来的流体相主要是CO_2,而不是地壳中常见的H_2O,这对于了解上地幔、下地壳环境下可能存在的流体相方面有重要意义。  相似文献   

18.
赵斌  赵劲松  许德如 《岩石学报》2017,33(6):1841-1858
矽卡岩矿床各种硅酸盐矿物中熔融包裹体和流体-熔融包裹体的显微测温资料和相成分让我们提出过大量矽卡岩是岩浆成因的建议。在本文中,我们提供沿长江中下游成矿带的许多矽卡岩矿床包含在石榴子石和辉石里的熔融包裹体和流体-熔融包裹体的激光拉曼分析结果,目的是证明所研究的并与Cu-Fe-Au矿床共生的矽卡岩系岩浆成因。我们的研究结果显示,熔融包裹体只含固体相和微量气相。流体-熔融包裹体除了含大量固相外,还含微量流体和气相以及没有被仪器检测到的气体。固体相与包裹体寄主矿物相同或类似。流体相主要为水或盐水溶液和包括C6H6、C3H6、C3H8、CH4、CO2和O2的气体。我们提出,熔融包裹体和流体-熔融包裹体是原始岩浆的最好代表。这就证明,矽卡岩组合是由一个原生岩浆直接结晶而成。此外,我们还讨论了岩浆矽卡岩形成的温度、分布范围和规模、形成机制和与Cu-Fe-Au矿化作用的联系。  相似文献   

19.
本文从江西德兴斑岩铜矿铜厂矿床的流体包裹体研究出发,讨论了矿床成矿物质来源与矿床成因。矿床中流体包裹体分为6类,即富液包裹体、富气包裹体、含石盐多相包裹体、含CO2多相包裹体以及熔体包裹体和熔体-流体包裹体。富气包裹体、含石盐多相包裹体和熔体与熔体-流体包裹体代表了成矿早期岩浆热液的特征。在这些包裹体中发现黄铜矿等金属矿物,表明成矿金属主要源自岩浆。含石盐多相包裹体和富气包裹体与矿体关系不甚密切,但其中所含有的金属矿物特别是黄铜矿,暗示早期来自岩浆的热液流体金属含量较高,形成于大气降水与岩浆热液混合之前。成矿中晚期大气降水流体在冷却和稀释岩浆流体方面对于矿床的形成作出了一定贡献,但是来自围岩的大气降水可能并没有向成矿体系提供大量金属。  相似文献   

20.
朱永峰 《地学前缘》2003,10(3):171-177
在俯冲过程中形成的超高压单斜辉石 (>5GPa)含一定量的H2 O和K2 O ,它因此能把地球浅部的水和钾携带到地幔深处。超高压单斜辉石在折返过程中以两种方式释放其中的H2 O和K2 O :(1)在低温环境下进入与单斜辉石共生的出溶矿物相如金云母、角闪石、多硅白云母、钾长石等 ;(2 )当温度足够高到发生部分熔融时 ,H2 O和K2 O将进入熔体相 ,形成富钾岩浆。超高压变质岩石能不能在其折返过程中产生部分熔融主要取决于折返的 p T轨迹。俯冲板片部分熔融形成熔体的性质在很大程度上取决于变质岩的部分熔融程度。虽然经受 p <5GPa变质作用的榴辉岩通过极低程度的部分熔融也有可能形成富钾熔体 ,但由于这类榴辉岩所能携带的K2 O和H2 O相对比较少 ,因此不可能产生大规模富钾熔体 ,但可能形成相对富Na的岩浆。超高压单斜辉石 (>5GPa)部分熔融产生的富钾岩浆可以解释碰撞后富钾岩浆的成因 ,这种富钾岩浆的形成深度一般较大 (位于~ 10 0km的地幔 )。而绿辉石部分熔融形成相对富钠熔体的深度相对较浅。从单斜辉石中释放出来的H2 O和K2 O能够合理地解释大陆碰撞后富钾岩浆的成因 ,通过俯冲板片折返过程的脱水和取钾反应 ,俯冲和折返过程与碰撞后岩浆活动密切联系在一起而成为一个整体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号